kitabu msingi mtihani «Spiral Dynamics:
Mastering Values, Leadership, and
Change» (ISBN-13: 978-1405133562)
Wadhamini

Mathematical Psychology

This project investigates mathematical psychology's historical and philosophical foundations to clarify its distinguishing characteristics and relationships to adjacent fields. Through gathering primary sources, histories, and interviews with researchers, author Prof. Colin Allen - University of Pittsburgh [1, 2, 3] and his students  Osman Attah, Brendan Fleig-Goldstein, Mara McGuire, and Dzintra Ullis have identified three central questions: 

  1. What makes the use of mathematics in mathematical psychology reasonably effective, in contrast to other sciences like physics-inspired mathematical biology or symbolic cognitive science? 
  2. How does the mathematical approach in mathematical psychology differ from other branches of psychology, like psychophysics and psychometrics? 
  3. What is the appropriate relationship of mathematical psychology to cognitive science, given diverging perspectives on aligning with this field? 

Preliminary findings emphasize data-driven modeling, skepticism of cognitive science alignments, and early reliance on computation. They will further probe the interplay with cognitive neuroscience and contrast rational-analysis approaches. By elucidating the motivating perspectives and objectives of different eras in mathematical psychology's development, they aim to understand its past and inform constructive dialogue on its philosophical foundations and future directions. This project intends to provide a conceptual roadmap for the field through integrated history and philosophy of science.



The Project: Integrating History and Philosophy of Mathematical Psychology



This project aims to integrate historical and philosophical perspectives to elucidate the foundations of mathematical psychology. As Norwood Hanson stated, history without philosophy is blind, while philosophy without history is empty. The goal is to find a middle ground between the contextual focus of history and the conceptual focus of philosophy.


The team acknowledges that all historical accounts are imperfect, but some can provide valuable insights. The history of mathematical psychology is difficult to tell without centering on the influential Stanford group. Tracing academic lineages and key events includes part of the picture, but more context is needed to fully understand the field's development.


The project draws on diverse sources, including research interviews, retrospective articles, formal histories, and online materials. More interviews and research will further flesh out the historical and philosophical foundations. While incomplete, the current analysis aims to identify important themes, contrasts, and questions that shaped mathematical psychology's evolution. Ultimately, the goal is an integrated historical and conceptual roadmap to inform contemporary perspectives on the field's identity and future directions.



The Rise of Mathematical Psychology



The history of efforts to mathematize psychology traces back to the quantitative imperative stemming from the Galilean scientific revolution. This imprinted the notion that proper science requires mathematics, leading to "physics envy" in other disciplines like psychology.


Many early psychologists argued psychology needed to become mathematical to be scientific. However, mathematizing psychology faced complications absent in the physical sciences. Objects in psychology were not readily present as quantifiable, provoking heated debates on whether psychometric and psychophysical measurements were meaningful.


Nonetheless, the desire to develop mathematical psychology persisted. Different approaches grappled with determining the appropriate role of mathematics in relation to psychological experiments and data. For example, Herbart favored starting with mathematics to ensure accuracy, while Fechner insisted experiments must come first to ground mathematics.


Tensions remain between data-driven versus theory-driven mathematization of psychology. Contemporary perspectives range from psychometric and psychophysical stances that foreground data to measurement-theoretical and computational approaches that emphasize formal models.


Elucidating how psychologists negotiated to apply mathematical methods to an apparently resistant subject matter helps reveal the evolving role and place of mathematics in psychology. This historical interplay shaped the emergence of mathematical psychology as a field.



The Distinctive Mathematical Approach of Mathematical Psychology



What sets mathematical psychology apart from other branches of psychology in its use of mathematics?


Several key aspects stand out:

  1. Advocating quantitative methods broadly. Mathematical psychology emerged partly to push psychology to embrace quantitative modeling and mathematics beyond basic statistics.
  2. Drawing from diverse mathematical tools. With greater training in mathematics, mathematical psychologists utilize more advanced and varied mathematical techniques like topology and differential geometry.
  3. Linking models and experiments. Mathematical psychologists emphasize tightly connecting experimental design and statistical analysis, with experiments created to test specific models.
  4. Favoring theoretical models. Mathematical psychology incorporates "pure" mathematical results and prefers analytic, hand-fitted models over data-driven computer models.
  5. Seeking general, cumulative theory. Unlike just describing data, mathematical psychology aspires to abstract, general theory supported across experiments, cumulative progress in models, and mathematical insight into psychological mechanisms.


So while not unique to mathematical psychology, these key elements help characterize how its use of mathematics diverges from adjacent fields like psychophysics and psychometrics. Mathematical psychology carved out an identity embracing quantitative methods but also theoretical depth and broad generalization.



Situating Mathematical Psychology Relative to Cognitive Science



What is the appropriate perspective on mathematical psychology's relationship to cognitive psychology and cognitive science? While connected historically and conceptually, essential distinctions exist.


Mathematical psychology draws from diverse disciplines that are also influential in cognitive science, like computer science, psychology, linguistics, and neuroscience. However, mathematical psychology appears more skeptical of alignments with cognitive science.


For example, cognitive science prominently adopted the computer as a model of the human mind, while mathematical psychology focused more narrowly on computers as modeling tools.


Additionally, mathematical psychology seems to take a more critical stance towards purely simulation-based modeling in cognitive science, instead emphasizing iterative modeling tightly linked to experimentation.


Overall, mathematical psychology exhibits significant overlap with cognitive science but strongly asserts its distinct mathematical orientation and modeling perspectives. Elucidating this complex relationship remains an ongoing project, but preliminary analysis suggests mathematical psychology intentionally diverged from cognitive science in its formative development.


This establishes mathematical psychology's separate identity while retaining connections to adjacent disciplines at the intersection of mathematics, psychology, and computation.



Looking Ahead: Open Questions and Future Research



This historical and conceptual analysis of mathematical psychology's foundations has illuminated key themes, contrasts, and questions that shaped the field's development. Further research can build on these preliminary findings.

Additional work is needed to flesh out the fuller intellectual, social, and political context driving the evolution of mathematical psychology. Examining the influences and reactions of key figures will provide a richer picture.

Ongoing investigation can probe whether the identified tensions and contrasts represent historical artifacts or still animate contemporary debates. Do mathematical psychologists today grapple with similar questions on the role of mathematics and modeling?

Further analysis should also elucidate the nature of the purported bidirectional relationship between modeling and experimentation in mathematical psychology. As well, clarifying the diversity of perspectives on goals like generality, abstraction, and cumulative theory-building would be valuable.

Finally, this research aims to spur discussion on philosophical issues such as realism, pluralism, and progress in mathematical psychology models. Is the accuracy and truth value of models an important consideration or mainly beside the point? And where is the field headed - towards greater verisimilitude or an indefinite balancing of complexity and abstraction?

By spurring reflection on this conceptual foundation, this historical and integrative analysis hopes to provide a roadmap to inform constructive dialogue on mathematical psychology's identity and future trajectory.


The SDTEST® 



The SDTEST® is a simple and fun tool to uncover our unique motivational values that use mathematical psychology of varying complexity.



The SDTEST® helps us better understand ourselves and others on this lifelong path of self-discovery.


Here are reports of polls which SDTEST® makes:


1) Vitendo vya kampuni zinazohusiana na wafanyikazi katika mwezi uliopita (ndio / hapana)

2) Vitendo vya makampuni kuhusiana na wafanyakazi katika mwezi uliopita (ukweli katika%)

3) Hofu

4) Shida kubwa zinazoikabili nchi yangu

5) Je! Ni sifa gani na uwezo gani ambao viongozi wazuri hutumia wakati wa kujenga timu zilizofanikiwa?

6) Google. Mambo ambayo yanaathiri ufanisi wa timu

7) Vipaumbele vikuu vya wanaotafuta kazi

8) Ni nini kinachomfanya bosi kuwa kiongozi mkubwa?

9) Ni nini hufanya watu kufanikiwa kazini?

10) Uko tayari kupokea malipo kidogo kufanya kazi kwa mbali?

11) Je! Umri upo?

12) Umri katika kazi

13) Umri katika maisha

14) Sababu za uzee

15) Sababu Kwa nini Watu Wape Up (na Anna Vital)

16) Imani (#WVS)

17) Utafiti wa Furaha ya Oxford

18) Ustawi wa kisaikolojia

19) Ambapo itakuwa fursa yako ijayo ya kufurahisha zaidi?

20) Je! Utafanya nini wiki hii kutunza afya yako ya akili?

21) Ninaishi nikifikiria zamani, za sasa au za baadaye

22) Meritocracy

23) Ujuzi wa bandia na mwisho wa maendeleo

24) Kwa nini watu huchelewesha?

25) Tofauti ya kijinsia katika kujenga kujiamini (IFD Allensbach)

26) Xing.com tathmini ya utamaduni

27) Patrick Lencioni "dysfunctions tano za timu"

28) Huruma ni ...

29) Ni nini muhimu kwa wataalamu wa IT katika kuchagua toleo la kazi?

30) Kwa nini watu wanapinga mabadiliko (na Siobhán McHale)

31) Je! Unasimamiaje hisia zako? (Na Nawal Mustafa M.A.)

32) Ujuzi 21 ambao unakulipa milele (na Jeremiah Teo / 赵汉昇)

33) Uhuru wa kweli ni ...

34) Njia 12 za kujenga uaminifu na wengine (na Justin Wright)

35) Tabia za mfanyakazi mwenye talanta (na Taasisi ya Usimamizi wa Vipaji)

36) Funguo 10 za kuhamasisha timu yako

37) Algebra ya Dhamiri (na Vladimir Lefebvre)

38) Uwezekano Tatu Tofauti wa Wakati Ujao (na Dk. Clare W. Graves)

39) Vitendo vya Kujenga Kujiamini Kutotikisika (na Suren Samarchyan)

40)


Below you can read an abridged version of the results of our VUCA poll “Fears“. The full version of the results is available for free in the FAQ section after login or registration.

Hofu

Nchi
lugha
-
Mail
Recalculate
Muhimu thamani ya mgawo uwiano
Usambazaji wa kawaida, na William Sealy Gosset (Mwanafunzi) r = 0.0317
Usambazaji wa kawaida, na William Sealy Gosset (Mwanafunzi) r = 0.0317
Usambazaji usio wa kawaida, na Spearman r = 0.0013
UsambazajiSio
kawaida
Sio
kawaida
Sio
kawaida
KawaidaKawaidaKawaidaKawaidaKawaida
Maswali yote
Maswali yote
Hofu yangu kubwa ni
Hofu yangu kubwa ni
Answer 1-
Chanya dhaifu
0.0537
Chanya dhaifu
0.0288
Hasi dhaifu
-0.0175
Chanya dhaifu
0.0948
Chanya dhaifu
0.0381
Hasi dhaifu
-0.0178
Hasi dhaifu
-0.1563
Answer 2-
Chanya dhaifu
0.0194
Hasi dhaifu
-0.0048
Hasi dhaifu
-0.0385
Chanya dhaifu
0.0655
Chanya dhaifu
0.0495
Chanya dhaifu
0.0106
Hasi dhaifu
-0.0982
Answer 3-
Hasi dhaifu
-0.0001
Hasi dhaifu
-0.0084
Hasi dhaifu
-0.0449
Hasi dhaifu
-0.0445
Chanya dhaifu
0.0485
Chanya dhaifu
0.0742
Hasi dhaifu
-0.0207
Answer 4-
Chanya dhaifu
0.0433
Chanya dhaifu
0.0291
Hasi dhaifu
-0.0232
Chanya dhaifu
0.0163
Chanya dhaifu
0.0367
Chanya dhaifu
0.0226
Hasi dhaifu
-0.0996
Answer 5-
Chanya dhaifu
0.0277
Chanya dhaifu
0.1291
Chanya dhaifu
0.0108
Chanya dhaifu
0.0745
Chanya dhaifu
0.0012
Hasi dhaifu
-0.0177
Hasi dhaifu
-0.1783
Answer 6-
Hasi dhaifu
-0.0015
Chanya dhaifu
0.0058
Hasi dhaifu
-0.0607
Hasi dhaifu
-0.0094
Chanya dhaifu
0.0255
Chanya dhaifu
0.0844
Hasi dhaifu
-0.0363
Answer 7-
Chanya dhaifu
0.0113
Chanya dhaifu
0.0348
Hasi dhaifu
-0.0657
Hasi dhaifu
-0.0305
Chanya dhaifu
0.0521
Chanya dhaifu
0.0686
Hasi dhaifu
-0.0532
Answer 8-
Chanya dhaifu
0.0657
Chanya dhaifu
0.0728
Hasi dhaifu
-0.0255
Chanya dhaifu
0.0124
Chanya dhaifu
0.0386
Chanya dhaifu
0.0153
Hasi dhaifu
-0.1345
Answer 9-
Chanya dhaifu
0.0757
Chanya dhaifu
0.1605
Chanya dhaifu
0.0066
Chanya dhaifu
0.0612
Hasi dhaifu
-0.0063
Hasi dhaifu
-0.0492
Hasi dhaifu
-0.1822
Answer 10-
Chanya dhaifu
0.0764
Chanya dhaifu
0.0669
Hasi dhaifu
-0.0124
Chanya dhaifu
0.0271
Chanya dhaifu
0.0365
Hasi dhaifu
-0.0130
Hasi dhaifu
-0.1348
Answer 11-
Chanya dhaifu
0.0634
Chanya dhaifu
0.0526
Hasi dhaifu
-0.0075
Chanya dhaifu
0.0096
Chanya dhaifu
0.0264
Chanya dhaifu
0.0242
Hasi dhaifu
-0.1270
Answer 12-
Chanya dhaifu
0.0450
Chanya dhaifu
0.0944
Hasi dhaifu
-0.0323
Chanya dhaifu
0.0307
Chanya dhaifu
0.0343
Chanya dhaifu
0.0260
Hasi dhaifu
-0.1530
Answer 13-
Chanya dhaifu
0.0725
Chanya dhaifu
0.0947
Hasi dhaifu
-0.0389
Chanya dhaifu
0.0265
Chanya dhaifu
0.0443
Chanya dhaifu
0.0144
Hasi dhaifu
-0.1631
Answer 14-
Chanya dhaifu
0.0820
Chanya dhaifu
0.0897
Hasi dhaifu
-0.0030
Hasi dhaifu
-0.0122
Chanya dhaifu
0.0060
Chanya dhaifu
0.0135
Hasi dhaifu
-0.1213
Answer 15-
Chanya dhaifu
0.0549
Chanya dhaifu
0.1265
Hasi dhaifu
-0.0334
Chanya dhaifu
0.0119
Hasi dhaifu
-0.0153
Chanya dhaifu
0.0242
Hasi dhaifu
-0.1157
Answer 16-
Chanya dhaifu
0.0732
Chanya dhaifu
0.0242
Hasi dhaifu
-0.0373
Hasi dhaifu
-0.0398
Chanya dhaifu
0.0729
Chanya dhaifu
0.0169
Hasi dhaifu
-0.0774


Export kwa MS Excel
Kazi hii itapatikana katika uchaguzi wako wa VUCA
Sawa

You can not only just create your poll in the ushuru «V.U.C.A uchaguzi designer» (with a unique link and your logo) but also you can earn money by selling its results in the ushuru «Duka la kura», as already the authors of polls.

If you participated in VUCA polls, you can see your results and compare them with the overall polls results, which are constantly growing, in your personal account after purchasing ushuru «My SDT»





[1] https://twitter.com/wileyprof
[2] https://colinallen.dnsalias.org
[3] https://philpeople.org/profiles/colin-allen

2023.10.13
Valerii Kosenko
Mmiliki wa Bidhaa SaaS SDTEST®

Valerii alifuzu kama mwanasaikolojia wa kufundisha jamii mwaka wa 1993 na tangu wakati huo ametumia ujuzi wake katika usimamizi wa mradi.
Valerii alipata Shahada ya Uzamili na kufuzu kwa mradi na meneja wa programu mwaka wa 2013. Wakati wa programu yake ya Uzamili, alipata ujuzi wa Project Roadmap (GPM Deutsche Gesellschaft für Projektmanagement e. V.) na Spiral Dynamics.
Valerii ndiye mwandishi wa kuchunguza kutokuwa na uhakika wa V.U.C.A. dhana kwa kutumia Spiral Dynamics na takwimu za hisabati katika saikolojia, na kura 38 za kimataifa.
Chapisho hili lina 0 Maoni
Jibu kwa
Ghairi jibu
Acha maoni yako
×
YOU FIND AN ERROR
Kupendekeza VERSION YOUR SAHIHI
Weka barua pepe yako kama taka
Tuma
kufuta
Bot
sdtest
1
Habari! Wacha nikuulize, je! Tayari unajua mienendo ya ond?