boky miorina fitsapana «Spiral Dynamics:
Mastering Values, Leadership, and
Change» (ISBN-13: 978-1405133562)
Sponsors
Afrikaans
Azərbaycan
Bosanski
Català
Cebuano
Chichewa
Corsu
Cymraeg
Dansk
Deutsch
Eesti
English
Español
Esperanto
Euskara
Filipino
Français
Frysk
Gaeilge
Galego
Gàidhlig na h-Alba
Hausa
Hawaiʻi
Hmoob
Hrvatski
Igbo
Indonesia
Italiano
Jawa
Kinyarwanda
Kreyòl Ayisyen
Kurdî
Latinus
Latviski
Lietuvių
Lëtzebuergesch
Magyar
Malagasy
Malti
Maori
Melayu
Nederlands
Norske
O'zbek
Polskie
Português
Română
Samoa
Sesotho
Shona
Shqip
Slovenski
Slovenský
Soomaali
Sunda
Suomen
Svenska
Tiếng Việt
Türkmenler
Türkçe
Yoruba
Zulu
isiXhosa
kiswahili
Íslenska
Čeština
Ελληνικά
Беларуская
Български
Кыргызча
Македонски
Монгол
Русский
Српски
Татар
Тоҷикӣ
Українська
Қазақ
հայերեն
יידיש
עִברִית
ئۇيغۇرچە
اردو
سنڌي
عربي
فارسی
پښتو
नेपाली
मराठी
हिन्दी
বাংলা
ਪੰਜਾਬੀ
ગુજરાતી
ଓଡିଆ
தமிழ்
తెలుగు
ಕನ್ನಡ
മലയാളം
සිංහල
ไทย
ພາສາລາວ
မြန်မာ
ქართული
አማርኛ
ខ្មែរ
中文(简体)
日本
한국인

Mathematical Psychology

This project investigates mathematical psychology's historical and philosophical foundations to clarify its distinguishing characteristics and relationships to adjacent fields. Through gathering primary sources, histories, and interviews with researchers, author Prof. Colin Allen - University of Pittsburgh [1, 2, 3] and his students  Osman Attah, Brendan Fleig-Goldstein, Mara McGuire, and Dzintra Ullis have identified three central questions: 

  1. What makes the use of mathematics in mathematical psychology reasonably effective, in contrast to other sciences like physics-inspired mathematical biology or symbolic cognitive science? 
  2. How does the mathematical approach in mathematical psychology differ from other branches of psychology, like psychophysics and psychometrics? 
  3. What is the appropriate relationship of mathematical psychology to cognitive science, given diverging perspectives on aligning with this field? 

Preliminary findings emphasize data-driven modeling, skepticism of cognitive science alignments, and early reliance on computation. They will further probe the interplay with cognitive neuroscience and contrast rational-analysis approaches. By elucidating the motivating perspectives and objectives of different eras in mathematical psychology's development, they aim to understand its past and inform constructive dialogue on its philosophical foundations and future directions. This project intends to provide a conceptual roadmap for the field through integrated history and philosophy of science.



The Project: Integrating History and Philosophy of Mathematical Psychology



This project aims to integrate historical and philosophical perspectives to elucidate the foundations of mathematical psychology. As Norwood Hanson stated, history without philosophy is blind, while philosophy without history is empty. The goal is to find a middle ground between the contextual focus of history and the conceptual focus of philosophy.


The team acknowledges that all historical accounts are imperfect, but some can provide valuable insights. The history of mathematical psychology is difficult to tell without centering on the influential Stanford group. Tracing academic lineages and key events includes part of the picture, but more context is needed to fully understand the field's development.


The project draws on diverse sources, including research interviews, retrospective articles, formal histories, and online materials. More interviews and research will further flesh out the historical and philosophical foundations. While incomplete, the current analysis aims to identify important themes, contrasts, and questions that shaped mathematical psychology's evolution. Ultimately, the goal is an integrated historical and conceptual roadmap to inform contemporary perspectives on the field's identity and future directions.



The Rise of Mathematical Psychology



The history of efforts to mathematize psychology traces back to the quantitative imperative stemming from the Galilean scientific revolution. This imprinted the notion that proper science requires mathematics, leading to "physics envy" in other disciplines like psychology.


Many early psychologists argued psychology needed to become mathematical to be scientific. However, mathematizing psychology faced complications absent in the physical sciences. Objects in psychology were not readily present as quantifiable, provoking heated debates on whether psychometric and psychophysical measurements were meaningful.


Nonetheless, the desire to develop mathematical psychology persisted. Different approaches grappled with determining the appropriate role of mathematics in relation to psychological experiments and data. For example, Herbart favored starting with mathematics to ensure accuracy, while Fechner insisted experiments must come first to ground mathematics.


Tensions remain between data-driven versus theory-driven mathematization of psychology. Contemporary perspectives range from psychometric and psychophysical stances that foreground data to measurement-theoretical and computational approaches that emphasize formal models.


Elucidating how psychologists negotiated to apply mathematical methods to an apparently resistant subject matter helps reveal the evolving role and place of mathematics in psychology. This historical interplay shaped the emergence of mathematical psychology as a field.



The Distinctive Mathematical Approach of Mathematical Psychology



What sets mathematical psychology apart from other branches of psychology in its use of mathematics?


Several key aspects stand out:

  1. Advocating quantitative methods broadly. Mathematical psychology emerged partly to push psychology to embrace quantitative modeling and mathematics beyond basic statistics.
  2. Drawing from diverse mathematical tools. With greater training in mathematics, mathematical psychologists utilize more advanced and varied mathematical techniques like topology and differential geometry.
  3. Linking models and experiments. Mathematical psychologists emphasize tightly connecting experimental design and statistical analysis, with experiments created to test specific models.
  4. Favoring theoretical models. Mathematical psychology incorporates "pure" mathematical results and prefers analytic, hand-fitted models over data-driven computer models.
  5. Seeking general, cumulative theory. Unlike just describing data, mathematical psychology aspires to abstract, general theory supported across experiments, cumulative progress in models, and mathematical insight into psychological mechanisms.


So while not unique to mathematical psychology, these key elements help characterize how its use of mathematics diverges from adjacent fields like psychophysics and psychometrics. Mathematical psychology carved out an identity embracing quantitative methods but also theoretical depth and broad generalization.



Situating Mathematical Psychology Relative to Cognitive Science



What is the appropriate perspective on mathematical psychology's relationship to cognitive psychology and cognitive science? While connected historically and conceptually, essential distinctions exist.


Mathematical psychology draws from diverse disciplines that are also influential in cognitive science, like computer science, psychology, linguistics, and neuroscience. However, mathematical psychology appears more skeptical of alignments with cognitive science.


For example, cognitive science prominently adopted the computer as a model of the human mind, while mathematical psychology focused more narrowly on computers as modeling tools.


Additionally, mathematical psychology seems to take a more critical stance towards purely simulation-based modeling in cognitive science, instead emphasizing iterative modeling tightly linked to experimentation.


Overall, mathematical psychology exhibits significant overlap with cognitive science but strongly asserts its distinct mathematical orientation and modeling perspectives. Elucidating this complex relationship remains an ongoing project, but preliminary analysis suggests mathematical psychology intentionally diverged from cognitive science in its formative development.


This establishes mathematical psychology's separate identity while retaining connections to adjacent disciplines at the intersection of mathematics, psychology, and computation.



Looking Ahead: Open Questions and Future Research



This historical and conceptual analysis of mathematical psychology's foundations has illuminated key themes, contrasts, and questions that shaped the field's development. Further research can build on these preliminary findings.

Additional work is needed to flesh out the fuller intellectual, social, and political context driving the evolution of mathematical psychology. Examining the influences and reactions of key figures will provide a richer picture.

Ongoing investigation can probe whether the identified tensions and contrasts represent historical artifacts or still animate contemporary debates. Do mathematical psychologists today grapple with similar questions on the role of mathematics and modeling?

Further analysis should also elucidate the nature of the purported bidirectional relationship between modeling and experimentation in mathematical psychology. As well, clarifying the diversity of perspectives on goals like generality, abstraction, and cumulative theory-building would be valuable.

Finally, this research aims to spur discussion on philosophical issues such as realism, pluralism, and progress in mathematical psychology models. Is the accuracy and truth value of models an important consideration or mainly beside the point? And where is the field headed - towards greater verisimilitude or an indefinite balancing of complexity and abstraction?

By spurring reflection on this conceptual foundation, this historical and integrative analysis hopes to provide a roadmap to inform constructive dialogue on mathematical psychology's identity and future trajectory.


The SDTEST® 



The SDTEST® is a simple and fun tool to uncover our unique motivational values that use mathematical psychology of varying complexity.



The SDTEST® helps us better understand ourselves and others on this lifelong path of self-discovery.


Here are reports of polls which SDTEST® makes:


1) Fihetsiketsehana orinasa mifandraika amin'ny mpiasam-panjakana amin'ny volana farany (eny / tsia)

2) Fihetsiketsehana orinasa mifandraika amin'ny mpiasam-panjakana amin'ny volana lasa (zava-misy ao%)

3) Tahotra

4) Olana lehibe indrindra atrehin'ny fireneko

5) Inona no toetra sy fahaiza-manao ampiasain'ny mpitarika tsara rehefa manorina ekipa mahomby?

6) Google. Ireo antony izay misy fiantraikany amin'ny fananana ekipa

7) Ny laharam-pahamehan'ny mpitady asa

8) Inona no mahatonga ny tompon'andraikitra ho mpitarika lehibe?

9) Inona no mahatonga ny olona hahomby amin'ny asa?

10) Vonona ve ianao handray karama kely kokoa hiasa lavitra?

11) Misy ny fiantrana ve?

12) AgeM amin'ny sehatry ny asa

13) Ageism amin'ny fiainana

14) Antony ny fiandohan-tena

15) Ny antony mahatonga ny olona ho kivy (nataon'i Anna Vital)

16) fahatokiana (#WVS)

17) Fanadihadiana momba ny Oxford

18) Ny fahasalamana ara-tsaina

19) Aiza ny fotoana mety hampientam-po anao indrindra?

20) Inona no hataonao amin'ity herinandro ity hikarakara ny fahasalamanao ara-tsaina?

21) Miaina mieritreritra ny lasa, ankehitriny na ho avy aho

22) Meritocokracy

23) Ny faharanitan-tsaina voajanahary sy ny fiafaran'ny sivilizasiona

24) Nahoana ny olona no mangataka?

25) Fahasamihafana ny lahy sy ny vavy amin'ny fananganana fahatokisan-tena (IFD allensbach)

26) Xing. Fandinihana ny kolontsaina

27) Patrick Lencioni's "The DysFunctions an'ny ekipa"

28) Ny fiaraha-miory dia ...

29) Inona no tena ilaina amin'ny manam-pahaizana manokana amin'ny fisafidianana ny tolotra amin'ny asa?

30) Maninona ny olona no manohitra ny fanovana (avy amin'i Siobhán Mchale)

31) Ahoana no fomba handraisanao ny fihetseham-ponao? (nataon'i Nawal Mustafa M.a.)

32) Fahaiza-manao 21 izay mandoa anao mandrakizay (nataon'i Jeremia Teo / 赵汉昇)

33) Ny tena fahafahana dia ...

34) Fomba 12 hananganana fahatokisana amin'ny hafa (nataon'i Justin Wright)

35) Toetran'ny mpiasa manan-talenta (avy amin'ny andrim-pitantanana talenta)

36) 10 Fanalahidy hanosika ny ekipanao

37) Algebra of conscience (nataon'i Vladimir Lefebvre)

38) Fahafahana telo miavaka amin'ny ho avy (nataon'i Dr. Clare W. Graves)

39) Hetsika hananganana fahatokisan-tena tsy azo hozongozonina (nataon'i Suren Samarchyan)

40)


Below you can read an abridged version of the results of our VUCA poll “Fears“. The full version of the results is available for free in the FAQ section after login or registration.

Tahotra

tabilaoFifandraisany
?
Ity ny fifandraisan'ny valintenin'ny fitsapan-kevitra sy ny lokon'ny fitsapana dinamika
VUCA
?
Ity misy fomba fijery vaovao momba ny fanitsiana eo amin'ny latabatra iray amin'ny alàlan'ny haavo an-tsokosoko izay misy ny volalility, ny tsy fahatokisana, ny tsy fitoviana ary ny fahaizana (V.U.C.A.) dia aseho amin'ny fiankinan-doha tsara sy ratsy
Firenena
fiteny
-
Mail
Recalculate
Critical lanjan'ny ny fifandraisany coefficient
Fizarana ara-dalàna, nataon'i William Sealy Gosset (mpianatra) r = 0.0314
Fizarana ara-dalàna, nataon'i William Sealy Gosset (mpianatra) r = 0.0314
Fizarana tsy mahazatra, avy amin'ny Spearman r = 0.0013
fizaranaNon
normal
Non
normal
Non
normal
ara-dalànaara-dalànaara-dalànaara-dalànaara-dalàna
Ny fanontaniana rehetra
Ny fanontaniana rehetra
Ny tahotra lehibe indrindra ananako dia
Ny tahotra lehibe indrindra ananako dia
Answer 1-
Malemy tsara
0.0539
Malemy tsara
0.0272
Malemy ratsy
-0.0202
Malemy tsara
0.0958
Malemy tsara
0.0409
Malemy ratsy
-0.0172
Malemy ratsy
-0.1573
Answer 2-
Malemy tsara
0.0180
Malemy ratsy
-0.0061
Malemy ratsy
-0.0395
Malemy tsara
0.0637
Malemy tsara
0.0490
Malemy tsara
0.0136
Malemy ratsy
-0.0957
Answer 3-
Malemy ratsy
-0.0008
Malemy ratsy
-0.0087
Malemy ratsy
-0.0458
Malemy ratsy
-0.0421
Malemy tsara
0.0522
Malemy tsara
0.0749
Malemy ratsy
-0.0254
Answer 4-
Malemy tsara
0.0453
Malemy tsara
0.0340
Malemy ratsy
-0.0287
Malemy tsara
0.0172
Malemy tsara
0.0388
Malemy tsara
0.0253
Malemy ratsy
-0.1048
Answer 5-
Malemy tsara
0.0248
Malemy tsara
0.1276
Malemy tsara
0.0106
Malemy tsara
0.0749
Malemy ratsy
-0.0001
Malemy ratsy
-0.0146
Malemy ratsy
-0.1769
Answer 6-
Malemy tsara
0.0002
Malemy tsara
0.0053
Malemy ratsy
-0.0601
Malemy ratsy
-0.0102
Malemy tsara
0.0253
Malemy tsara
0.0837
Malemy ratsy
-0.0365
Answer 7-
Malemy tsara
0.0115
Malemy tsara
0.0316
Malemy ratsy
-0.0650
Malemy ratsy
-0.0312
Malemy tsara
0.0532
Malemy tsara
0.0693
Malemy ratsy
-0.0530
Answer 8-
Malemy tsara
0.0651
Malemy tsara
0.0713
Malemy ratsy
-0.0252
Malemy tsara
0.0132
Malemy tsara
0.0396
Malemy tsara
0.0153
Malemy ratsy
-0.1354
Answer 9-
Malemy tsara
0.0773
Malemy tsara
0.1617
Malemy tsara
0.0048
Malemy tsara
0.0624
Malemy ratsy
-0.0080
Malemy ratsy
-0.0504
Malemy ratsy
-0.1819
Answer 10-
Malemy tsara
0.0783
Malemy tsara
0.0625
Malemy ratsy
-0.0114
Malemy tsara
0.0248
Malemy tsara
0.0341
Malemy ratsy
-0.0102
Malemy ratsy
-0.1319
Answer 11-
Malemy tsara
0.0635
Malemy tsara
0.0519
Malemy ratsy
-0.0069
Malemy tsara
0.0095
Malemy tsara
0.0279
Malemy tsara
0.0234
Malemy ratsy
-0.1281
Answer 12-
Malemy tsara
0.0422
Malemy tsara
0.0932
Malemy ratsy
-0.0332
Malemy tsara
0.0349
Malemy tsara
0.0335
Malemy tsara
0.0265
Malemy ratsy
-0.1539
Answer 13-
Malemy tsara
0.0716
Malemy tsara
0.0916
Malemy ratsy
-0.0369
Malemy tsara
0.0275
Malemy tsara
0.0440
Malemy tsara
0.0153
Malemy ratsy
-0.1637
Answer 14-
Malemy tsara
0.0842
Malemy tsara
0.0889
Malemy ratsy
-0.0042
Malemy ratsy
-0.0133
Malemy tsara
0.0077
Malemy tsara
0.0133
Malemy ratsy
-0.1218
Answer 15-
Malemy tsara
0.0572
Malemy tsara
0.1225
Malemy ratsy
-0.0336
Malemy tsara
0.0106
Malemy ratsy
-0.0137
Malemy tsara
0.0255
Malemy ratsy
-0.1158
Answer 16-
Malemy tsara
0.0720
Malemy tsara
0.0210
Malemy ratsy
-0.0375
Malemy ratsy
-0.0381
Malemy tsara
0.0710
Malemy tsara
0.0178
Malemy ratsy
-0.0749


MS Excel ho Export
Ity fampiasa ity dia ho hita ao amin'ny biraom-pifidianana VUCA manokana
Ok

You can not only just create your poll in the Tariff «V.U.C.A fitsapan-kevitra endrika» (with a unique link and your logo) but also you can earn money by selling its results in the Tariff «Poll Shop», as already the authors of polls.

If you participated in VUCA polls, you can see your results and compare them with the overall polls results, which are constantly growing, in your personal account after purchasing Tariff «My SDT»





[1] https://twitter.com/wileyprof
[2] https://colinallen.dnsalias.org
[3] https://philpeople.org/profiles/colin-allen

2023.10.13
FearpersonqualitiesprojectorganizationalstructureRACIresponsibilitymatrixCritical ChainProject Managementfocus factorJiraempathyleadersbossGermanyChinaPolicyUkraineRussiawarvolatilityuncertaintycomplexityambiguityVUCArelocatejobproblemcountryreasongive upobjectivekeyresultmathematicalpsychologyMBTIHR metricsstandardDEIcorrelationriskscoringmodelGame TheoryPrisoner's Dilemma
Valerii Kosenko
Tompon'ny vokatra SaaS SDTEST®

Valerii dia nahafeno fepetra ho pedagogy-psychologist sosialy tamin'ny 1993 ary nanomboka nampihatra ny fahalalany tamin'ny fitantanana tetikasa.
Valerii dia nahazo mari-pahaizana Master sy ny mari-pahaizana momba ny tetikasa ary ny programa amin'ny 2013. Nandritra ny fandaharam-pampianarana Master dia nanjary nahafantatra ny Project Roadmap (GPM Deutsche Gesellschaft für Projektmanagement e. V.) sy ny Spiral Dynamics izy.
Valerii no mpanoratra ny fikarohana ny tsy fahatokisana ny V.U.C.A. hevitra mampiasa Spiral Dynamics sy statistika matematika amin'ny psikolojia, ary fitsapan-kevitra iraisam-pirenena 38.
Ity lahatsoratra ity dia manana 0 Comments
Mamaly
Hanafoana ny valiny
Avelao ny hevitrao
×
HITANAO AN ERROR
Soso-kevitra NY Hanitsy ny VERSION
Ampidiro ny e-mail toy ny tiana
Send
hanafoana
Bot
Salama e! Mamelà ahy hanontany anao, efa zatra ny dinamika spiral ve ianao?
Eny!
Tsia, tsy mahatsapa zatra amin'ny dinamika spiral aho.
sdtest
1
Salama e! Mamelà ahy hanontany anao, efa zatra ny dinamika spiral ve ianao?