boky miorina fitsapana «Spiral Dynamics:
Mastering Values, Leadership, and
Change» (ISBN-13: 978-1405133562)
Sponsors

Mathematical Psychology

This project investigates mathematical psychology's historical and philosophical foundations to clarify its distinguishing characteristics and relationships to adjacent fields. Through gathering primary sources, histories, and interviews with researchers, author Prof. Colin Allen - University of Pittsburgh [1, 2, 3] and his students  Osman Attah, Brendan Fleig-Goldstein, Mara McGuire, and Dzintra Ullis have identified three central questions: 

  1. What makes the use of mathematics in mathematical psychology reasonably effective, in contrast to other sciences like physics-inspired mathematical biology or symbolic cognitive science? 
  2. How does the mathematical approach in mathematical psychology differ from other branches of psychology, like psychophysics and psychometrics? 
  3. What is the appropriate relationship of mathematical psychology to cognitive science, given diverging perspectives on aligning with this field? 

Preliminary findings emphasize data-driven modeling, skepticism of cognitive science alignments, and early reliance on computation. They will further probe the interplay with cognitive neuroscience and contrast rational-analysis approaches. By elucidating the motivating perspectives and objectives of different eras in mathematical psychology's development, they aim to understand its past and inform constructive dialogue on its philosophical foundations and future directions. This project intends to provide a conceptual roadmap for the field through integrated history and philosophy of science.



The Project: Integrating History and Philosophy of Mathematical Psychology



This project aims to integrate historical and philosophical perspectives to elucidate the foundations of mathematical psychology. As Norwood Hanson stated, history without philosophy is blind, while philosophy without history is empty. The goal is to find a middle ground between the contextual focus of history and the conceptual focus of philosophy.


The team acknowledges that all historical accounts are imperfect, but some can provide valuable insights. The history of mathematical psychology is difficult to tell without centering on the influential Stanford group. Tracing academic lineages and key events includes part of the picture, but more context is needed to fully understand the field's development.


The project draws on diverse sources, including research interviews, retrospective articles, formal histories, and online materials. More interviews and research will further flesh out the historical and philosophical foundations. While incomplete, the current analysis aims to identify important themes, contrasts, and questions that shaped mathematical psychology's evolution. Ultimately, the goal is an integrated historical and conceptual roadmap to inform contemporary perspectives on the field's identity and future directions.



The Rise of Mathematical Psychology



The history of efforts to mathematize psychology traces back to the quantitative imperative stemming from the Galilean scientific revolution. This imprinted the notion that proper science requires mathematics, leading to "physics envy" in other disciplines like psychology.


Many early psychologists argued psychology needed to become mathematical to be scientific. However, mathematizing psychology faced complications absent in the physical sciences. Objects in psychology were not readily present as quantifiable, provoking heated debates on whether psychometric and psychophysical measurements were meaningful.


Nonetheless, the desire to develop mathematical psychology persisted. Different approaches grappled with determining the appropriate role of mathematics in relation to psychological experiments and data. For example, Herbart favored starting with mathematics to ensure accuracy, while Fechner insisted experiments must come first to ground mathematics.


Tensions remain between data-driven versus theory-driven mathematization of psychology. Contemporary perspectives range from psychometric and psychophysical stances that foreground data to measurement-theoretical and computational approaches that emphasize formal models.


Elucidating how psychologists negotiated to apply mathematical methods to an apparently resistant subject matter helps reveal the evolving role and place of mathematics in psychology. This historical interplay shaped the emergence of mathematical psychology as a field.



The Distinctive Mathematical Approach of Mathematical Psychology



What sets mathematical psychology apart from other branches of psychology in its use of mathematics?


Several key aspects stand out:

  1. Advocating quantitative methods broadly. Mathematical psychology emerged partly to push psychology to embrace quantitative modeling and mathematics beyond basic statistics.
  2. Drawing from diverse mathematical tools. With greater training in mathematics, mathematical psychologists utilize more advanced and varied mathematical techniques like topology and differential geometry.
  3. Linking models and experiments. Mathematical psychologists emphasize tightly connecting experimental design and statistical analysis, with experiments created to test specific models.
  4. Favoring theoretical models. Mathematical psychology incorporates "pure" mathematical results and prefers analytic, hand-fitted models over data-driven computer models.
  5. Seeking general, cumulative theory. Unlike just describing data, mathematical psychology aspires to abstract, general theory supported across experiments, cumulative progress in models, and mathematical insight into psychological mechanisms.


So while not unique to mathematical psychology, these key elements help characterize how its use of mathematics diverges from adjacent fields like psychophysics and psychometrics. Mathematical psychology carved out an identity embracing quantitative methods but also theoretical depth and broad generalization.



Situating Mathematical Psychology Relative to Cognitive Science



What is the appropriate perspective on mathematical psychology's relationship to cognitive psychology and cognitive science? While connected historically and conceptually, essential distinctions exist.


Mathematical psychology draws from diverse disciplines that are also influential in cognitive science, like computer science, psychology, linguistics, and neuroscience. However, mathematical psychology appears more skeptical of alignments with cognitive science.


For example, cognitive science prominently adopted the computer as a model of the human mind, while mathematical psychology focused more narrowly on computers as modeling tools.


Additionally, mathematical psychology seems to take a more critical stance towards purely simulation-based modeling in cognitive science, instead emphasizing iterative modeling tightly linked to experimentation.


Overall, mathematical psychology exhibits significant overlap with cognitive science but strongly asserts its distinct mathematical orientation and modeling perspectives. Elucidating this complex relationship remains an ongoing project, but preliminary analysis suggests mathematical psychology intentionally diverged from cognitive science in its formative development.


This establishes mathematical psychology's separate identity while retaining connections to adjacent disciplines at the intersection of mathematics, psychology, and computation.



Looking Ahead: Open Questions and Future Research



This historical and conceptual analysis of mathematical psychology's foundations has illuminated key themes, contrasts, and questions that shaped the field's development. Further research can build on these preliminary findings.

Additional work is needed to flesh out the fuller intellectual, social, and political context driving the evolution of mathematical psychology. Examining the influences and reactions of key figures will provide a richer picture.

Ongoing investigation can probe whether the identified tensions and contrasts represent historical artifacts or still animate contemporary debates. Do mathematical psychologists today grapple with similar questions on the role of mathematics and modeling?

Further analysis should also elucidate the nature of the purported bidirectional relationship between modeling and experimentation in mathematical psychology. As well, clarifying the diversity of perspectives on goals like generality, abstraction, and cumulative theory-building would be valuable.

Finally, this research aims to spur discussion on philosophical issues such as realism, pluralism, and progress in mathematical psychology models. Is the accuracy and truth value of models an important consideration or mainly beside the point? And where is the field headed - towards greater verisimilitude or an indefinite balancing of complexity and abstraction?

By spurring reflection on this conceptual foundation, this historical and integrative analysis hopes to provide a roadmap to inform constructive dialogue on mathematical psychology's identity and future trajectory.


The SDTEST® 



The SDTEST® is a simple and fun tool to uncover our unique motivational values that use mathematical psychology of varying complexity.



The SDTEST® helps us better understand ourselves and others on this lifelong path of self-discovery.


Here are reports of polls which SDTEST® makes:


1) Fihetsiketsehana orinasa mifandraika amin'ny mpiasam-panjakana amin'ny volana farany (eny / tsia)

2) Fihetsiketsehana orinasa mifandraika amin'ny mpiasam-panjakana amin'ny volana lasa (zava-misy ao%)

3) Tahotra

4) Olana lehibe indrindra atrehin'ny fireneko

5) Inona no toetra sy fahaiza-manao ampiasain'ny mpitarika tsara rehefa manorina ekipa mahomby?

6) Google. Ireo antony izay misy fiantraikany amin'ny fananana ekipa

7) Ny laharam-pahamehan'ny mpitady asa

8) Inona no mahatonga ny tompon'andraikitra ho mpitarika lehibe?

9) Inona no mahatonga ny olona hahomby amin'ny asa?

10) Vonona ve ianao handray karama kely kokoa hiasa lavitra?

11) Misy ny fiantrana ve?

12) AgeM amin'ny sehatry ny asa

13) Ageism amin'ny fiainana

14) Antony ny fiandohan-tena

15) Ny antony mahatonga ny olona ho kivy (nataon'i Anna Vital)

16) fahatokiana (#WVS)

17) Fanadihadiana momba ny Oxford

18) Ny fahasalamana ara-tsaina

19) Aiza ny fotoana mety hampientam-po anao indrindra?

20) Inona no hataonao amin'ity herinandro ity hikarakara ny fahasalamanao ara-tsaina?

21) Miaina mieritreritra ny lasa, ankehitriny na ho avy aho

22) Meritocokracy

23) Ny faharanitan-tsaina voajanahary sy ny fiafaran'ny sivilizasiona

24) Nahoana ny olona no mangataka?

25) Fahasamihafana ny lahy sy ny vavy amin'ny fananganana fahatokisan-tena (IFD allensbach)

26) Xing. Fandinihana ny kolontsaina

27) Patrick Lencioni's "The DysFunctions an'ny ekipa"

28) Ny fiaraha-miory dia ...

29) Inona no tena ilaina amin'ny manam-pahaizana manokana amin'ny fisafidianana ny tolotra amin'ny asa?

30) Maninona ny olona no manohitra ny fanovana (avy amin'i Siobhán Mchale)

31) Ahoana no fomba handraisanao ny fihetseham-ponao? (nataon'i Nawal Mustafa M.a.)

32) Fahaiza-manao 21 izay mandoa anao mandrakizay (nataon'i Jeremia Teo / 赵汉昇)

33) Ny tena fahafahana dia ...

34) Fomba 12 hananganana fahatokisana amin'ny hafa (nataon'i Justin Wright)

35) Toetran'ny mpiasa manan-talenta (avy amin'ny andrim-pitantanana talenta)

36) 10 Fanalahidy hanosika ny ekipanao

37) Algebra of conscience (nataon'i Vladimir Lefebvre)

38) Fahafahana telo miavaka amin'ny ho avy (nataon'i Dr. Clare W. Graves)


Below you can read an abridged version of the results of our VUCA poll “Fears“. The full version of the results is available for free in the FAQ section after login or registration.

Tahotra

Firenena
fiteny
-
Mail
Recalculate
Critical lanjan'ny ny fifandraisany coefficient
Fizarana ara-dalàna, nataon'i William Sealy Gosset (mpianatra) r = 0.033
Fizarana ara-dalàna, nataon'i William Sealy Gosset (mpianatra) r = 0.033
Fizarana tsy mahazatra, avy amin'ny Spearman r = 0.0013
fizaranaNon
normal
Non
normal
Non
normal
ara-dalànaara-dalànaara-dalànaara-dalànaara-dalàna
Ny fanontaniana rehetra
Ny fanontaniana rehetra
Ny tahotra lehibe indrindra ananako dia
Ny tahotra lehibe indrindra ananako dia
Answer 1-
Malemy tsara
0.0559
Malemy tsara
0.0315
Malemy ratsy
-0.0170
Malemy tsara
0.0920
Malemy tsara
0.0294
Malemy ratsy
-0.0124
Malemy ratsy
-0.1539
Answer 2-
Malemy tsara
0.0229
Malemy ratsy
-0.0002
Malemy ratsy
-0.0448
Malemy tsara
0.0636
Malemy tsara
0.0445
Malemy tsara
0.0134
Malemy ratsy
-0.0939
Answer 3-
Malemy ratsy
-0.0032
Malemy ratsy
-0.0121
Malemy ratsy
-0.0416
Malemy ratsy
-0.0462
Malemy tsara
0.0466
Malemy tsara
0.0788
Malemy ratsy
-0.0195
Answer 4-
Malemy tsara
0.0438
Malemy tsara
0.0348
Malemy ratsy
-0.0195
Malemy tsara
0.0153
Malemy tsara
0.0300
Malemy tsara
0.0207
Malemy ratsy
-0.0980
Answer 5-
Malemy tsara
0.0304
Malemy tsara
0.1282
Malemy tsara
0.0135
Malemy tsara
0.0734
Malemy ratsy
-0.0013
Malemy ratsy
-0.0200
Malemy ratsy
-0.1757
Answer 6-
Malemy ratsy
-0.0002
Malemy tsara
0.0082
Malemy ratsy
-0.0627
Malemy ratsy
-0.0083
Malemy tsara
0.0193
Malemy tsara
0.0831
Malemy ratsy
-0.0315
Answer 7-
Malemy tsara
0.0126
Malemy tsara
0.0381
Malemy ratsy
-0.0687
Malemy ratsy
-0.0243
Malemy tsara
0.0469
Malemy tsara
0.0642
Malemy ratsy
-0.0515
Answer 8-
Malemy tsara
0.0698
Malemy tsara
0.0848
Malemy ratsy
-0.0327
Malemy tsara
0.0148
Malemy tsara
0.0345
Malemy tsara
0.0134
Malemy ratsy
-0.1365
Answer 9-
Malemy tsara
0.0668
Malemy tsara
0.1676
Malemy tsara
0.0083
Malemy tsara
0.0693
Malemy ratsy
-0.0131
Malemy ratsy
-0.0516
Malemy ratsy
-0.1818
Answer 10-
Malemy tsara
0.0782
Malemy tsara
0.0753
Malemy ratsy
-0.0204
Malemy tsara
0.0247
Malemy tsara
0.0342
Malemy ratsy
-0.0131
Malemy ratsy
-0.1304
Answer 11-
Malemy tsara
0.0578
Malemy tsara
0.0532
Malemy ratsy
-0.0096
Malemy tsara
0.0087
Malemy tsara
0.0195
Malemy tsara
0.0311
Malemy ratsy
-0.1196
Answer 12-
Malemy tsara
0.0390
Malemy tsara
0.1037
Malemy ratsy
-0.0358
Malemy tsara
0.0358
Malemy tsara
0.0250
Malemy tsara
0.0299
Malemy ratsy
-0.1520
Answer 13-
Malemy tsara
0.0644
Malemy tsara
0.1048
Malemy ratsy
-0.0448
Malemy tsara
0.0268
Malemy tsara
0.0417
Malemy tsara
0.0178
Malemy ratsy
-0.1600
Answer 14-
Malemy tsara
0.0712
Malemy tsara
0.1021
Malemy ratsy
-0.0007
Malemy ratsy
-0.0088
Malemy ratsy
-0.0011
Malemy tsara
0.0088
Malemy ratsy
-0.1169
Answer 15-
Malemy tsara
0.0557
Malemy tsara
0.1365
Malemy ratsy
-0.0423
Malemy tsara
0.0177
Malemy ratsy
-0.0162
Malemy tsara
0.0224
Malemy ratsy
-0.1179
Answer 16-
Malemy tsara
0.0591
Malemy tsara
0.0273
Malemy ratsy
-0.0386
Malemy ratsy
-0.0400
Malemy tsara
0.0653
Malemy tsara
0.0284
Malemy ratsy
-0.0708


MS Excel ho Export
Ity fampiasa ity dia ho hita ao amin'ny biraom-pifidianana VUCA manokana
Ok

You can not only just create your poll in the Tariff «V.U.C.A fitsapan-kevitra endrika» (with a unique link and your logo) but also you can earn money by selling its results in the Tariff «Poll Shop», as already the authors of polls.

If you participated in VUCA polls, you can see your results and compare them with the overall polls results, which are constantly growing, in your personal account after purchasing Tariff «My SDT»





[1] https://twitter.com/wileyprof
[2] https://colinallen.dnsalias.org
[3] https://philpeople.org/profiles/colin-allen

2023.10.13
Valerii Kosenko
Product tompon'ny biby fiompy SDTest®

Valerii dia nahafeno fepetra ho praiminisim-peo ara-tsosialy-psikolojia tamin'ny 1993 ary nanomboka nampihatra ny fahalalany tamin'ny fitantanana ny tetikasa.
Nahazo mari-pahaizana master sy ny mari-pahaizana momba ny tetikasa sy ny programa tamin'ny taona 2013. Nandritra ny fandaharan'asan'ny tompony, dia nanjary zatra tamin'ny tondrozotra tetikasa izy (GPM Deutsche Gesellschafmaft Für Projektmanagement e. V.) sy ny dinamika.
Nandray ny fitsapana dinamika isan-karazany i Valerii ary nampiasa ny fahalalany sy niainany mba hampifanaraka ny dikan-teny SDTT amin'izao fotoana izao.
Valerii no mpanoratra ny mikaroka ny tsy fahazoana antoka ny V.u.c.a. Hevitra momba ny fampiasana dinamika sy antontan'isa matematika ao amin'ny psikolojia, fitsapan-kevitra iraisam-pirenena 20 mahery.
Ity lahatsoratra ity dia manana 0 Comments
Mamaly
Hanafoana ny valiny
Avelao ny hevitrao
×
HITANAO AN ERROR
Soso-kevitra NY Hanitsy ny VERSION
Ampidiro ny e-mail toy ny tiana
Send
hanafoana
Bot
sdtest
1
Salama e! Mamelà ahy hanontany anao, efa zatra ny dinamika spiral ve ianao?