መጽሐፍ የተመሠረተ ፈተና «Spiral Dynamics:
Mastering Values, Leadership, and
Change» (ISBN-13: 978-1405133562)
ስፖንሰር አድራጊዎች
Afrikaans
Azərbaycan
Bosanski
Català
Cebuano
Chichewa
Corsu
Cymraeg
Dansk
Deutsch
Eesti
English
Español
Esperanto
Euskara
Filipino
Français
Frysk
Gaeilge
Galego
Gàidhlig na h-Alba
Hausa
Hawaiʻi
Hmoob
Hrvatski
Igbo
Indonesia
Italiano
Jawa
Kinyarwanda
Kreyòl Ayisyen
Kurdî
Latinus
Latviski
Lietuvių
Lëtzebuergesch
Magyar
Malagasy
Malti
Maori
Melayu
Nederlands
Norske
O'zbek
Polskie
Português
Română
Samoa
Sesotho
Shona
Shqip
Slovenski
Slovenský
Soomaali
Sunda
Suomen
Svenska
Tiếng Việt
Türkmenler
Türkçe
Yoruba
Zulu
isiXhosa
kiswahili
Íslenska
Čeština
Ελληνικά
Беларуская
Български
Кыргызча
Македонски
Монгол
Русский
Српски
Татар
Тоҷикӣ
Українська
Қазақ
հայերեն
יידיש
עִברִית
ئۇيغۇرچە
اردو
سنڌي
عربي
فارسی
پښتو
नेपाली
मराठी
हिन्दी
বাংলা
ਪੰਜਾਬੀ
ગુજરાતી
ଓଡିଆ
தமிழ்
తెలుగు
ಕನ್ನಡ
മലയാളം
සිංහල
ไทย
ພາສາລາວ
မြန်မာ
ქართული
አማርኛ
ខ្មែរ
中文(简体)
日本
한국인

Mathematical Psychology

This project investigates mathematical psychology's historical and philosophical foundations to clarify its distinguishing characteristics and relationships to adjacent fields. Through gathering primary sources, histories, and interviews with researchers, author Prof. Colin Allen - University of Pittsburgh [1, 2, 3] and his students  Osman Attah, Brendan Fleig-Goldstein, Mara McGuire, and Dzintra Ullis have identified three central questions: 

  1. What makes the use of mathematics in mathematical psychology reasonably effective, in contrast to other sciences like physics-inspired mathematical biology or symbolic cognitive science? 
  2. How does the mathematical approach in mathematical psychology differ from other branches of psychology, like psychophysics and psychometrics? 
  3. What is the appropriate relationship of mathematical psychology to cognitive science, given diverging perspectives on aligning with this field? 

Preliminary findings emphasize data-driven modeling, skepticism of cognitive science alignments, and early reliance on computation. They will further probe the interplay with cognitive neuroscience and contrast rational-analysis approaches. By elucidating the motivating perspectives and objectives of different eras in mathematical psychology's development, they aim to understand its past and inform constructive dialogue on its philosophical foundations and future directions. This project intends to provide a conceptual roadmap for the field through integrated history and philosophy of science.



The Project: Integrating History and Philosophy of Mathematical Psychology



This project aims to integrate historical and philosophical perspectives to elucidate the foundations of mathematical psychology. As Norwood Hanson stated, history without philosophy is blind, while philosophy without history is empty. The goal is to find a middle ground between the contextual focus of history and the conceptual focus of philosophy.


The team acknowledges that all historical accounts are imperfect, but some can provide valuable insights. The history of mathematical psychology is difficult to tell without centering on the influential Stanford group. Tracing academic lineages and key events includes part of the picture, but more context is needed to fully understand the field's development.


The project draws on diverse sources, including research interviews, retrospective articles, formal histories, and online materials. More interviews and research will further flesh out the historical and philosophical foundations. While incomplete, the current analysis aims to identify important themes, contrasts, and questions that shaped mathematical psychology's evolution. Ultimately, the goal is an integrated historical and conceptual roadmap to inform contemporary perspectives on the field's identity and future directions.



The Rise of Mathematical Psychology



The history of efforts to mathematize psychology traces back to the quantitative imperative stemming from the Galilean scientific revolution. This imprinted the notion that proper science requires mathematics, leading to "physics envy" in other disciplines like psychology.


Many early psychologists argued psychology needed to become mathematical to be scientific. However, mathematizing psychology faced complications absent in the physical sciences. Objects in psychology were not readily present as quantifiable, provoking heated debates on whether psychometric and psychophysical measurements were meaningful.


Nonetheless, the desire to develop mathematical psychology persisted. Different approaches grappled with determining the appropriate role of mathematics in relation to psychological experiments and data. For example, Herbart favored starting with mathematics to ensure accuracy, while Fechner insisted experiments must come first to ground mathematics.


Tensions remain between data-driven versus theory-driven mathematization of psychology. Contemporary perspectives range from psychometric and psychophysical stances that foreground data to measurement-theoretical and computational approaches that emphasize formal models.


Elucidating how psychologists negotiated to apply mathematical methods to an apparently resistant subject matter helps reveal the evolving role and place of mathematics in psychology. This historical interplay shaped the emergence of mathematical psychology as a field.



The Distinctive Mathematical Approach of Mathematical Psychology



What sets mathematical psychology apart from other branches of psychology in its use of mathematics?


Several key aspects stand out:

  1. Advocating quantitative methods broadly. Mathematical psychology emerged partly to push psychology to embrace quantitative modeling and mathematics beyond basic statistics.
  2. Drawing from diverse mathematical tools. With greater training in mathematics, mathematical psychologists utilize more advanced and varied mathematical techniques like topology and differential geometry.
  3. Linking models and experiments. Mathematical psychologists emphasize tightly connecting experimental design and statistical analysis, with experiments created to test specific models.
  4. Favoring theoretical models. Mathematical psychology incorporates "pure" mathematical results and prefers analytic, hand-fitted models over data-driven computer models.
  5. Seeking general, cumulative theory. Unlike just describing data, mathematical psychology aspires to abstract, general theory supported across experiments, cumulative progress in models, and mathematical insight into psychological mechanisms.


So while not unique to mathematical psychology, these key elements help characterize how its use of mathematics diverges from adjacent fields like psychophysics and psychometrics. Mathematical psychology carved out an identity embracing quantitative methods but also theoretical depth and broad generalization.



Situating Mathematical Psychology Relative to Cognitive Science



What is the appropriate perspective on mathematical psychology's relationship to cognitive psychology and cognitive science? While connected historically and conceptually, essential distinctions exist.


Mathematical psychology draws from diverse disciplines that are also influential in cognitive science, like computer science, psychology, linguistics, and neuroscience. However, mathematical psychology appears more skeptical of alignments with cognitive science.


For example, cognitive science prominently adopted the computer as a model of the human mind, while mathematical psychology focused more narrowly on computers as modeling tools.


Additionally, mathematical psychology seems to take a more critical stance towards purely simulation-based modeling in cognitive science, instead emphasizing iterative modeling tightly linked to experimentation.


Overall, mathematical psychology exhibits significant overlap with cognitive science but strongly asserts its distinct mathematical orientation and modeling perspectives. Elucidating this complex relationship remains an ongoing project, but preliminary analysis suggests mathematical psychology intentionally diverged from cognitive science in its formative development.


This establishes mathematical psychology's separate identity while retaining connections to adjacent disciplines at the intersection of mathematics, psychology, and computation.



Looking Ahead: Open Questions and Future Research



This historical and conceptual analysis of mathematical psychology's foundations has illuminated key themes, contrasts, and questions that shaped the field's development. Further research can build on these preliminary findings.

Additional work is needed to flesh out the fuller intellectual, social, and political context driving the evolution of mathematical psychology. Examining the influences and reactions of key figures will provide a richer picture.

Ongoing investigation can probe whether the identified tensions and contrasts represent historical artifacts or still animate contemporary debates. Do mathematical psychologists today grapple with similar questions on the role of mathematics and modeling?

Further analysis should also elucidate the nature of the purported bidirectional relationship between modeling and experimentation in mathematical psychology. As well, clarifying the diversity of perspectives on goals like generality, abstraction, and cumulative theory-building would be valuable.

Finally, this research aims to spur discussion on philosophical issues such as realism, pluralism, and progress in mathematical psychology models. Is the accuracy and truth value of models an important consideration or mainly beside the point? And where is the field headed - towards greater verisimilitude or an indefinite balancing of complexity and abstraction?

By spurring reflection on this conceptual foundation, this historical and integrative analysis hopes to provide a roadmap to inform constructive dialogue on mathematical psychology's identity and future trajectory.


The SDTEST® 



The SDTEST® is a simple and fun tool to uncover our unique motivational values that use mathematical psychology of varying complexity.



The SDTEST® helps us better understand ourselves and others on this lifelong path of self-discovery.


Here are reports of polls which SDTEST® makes:


1) ባለፈው ወር ከሠራተኞች ጋር በተያያዘ የኩባንያዎች እርምጃዎች (አዎ / አይ)

2) ባለፈው ወር ከሠራተኞች ጋር በተያያዘ የኩባንያዎች እርምጃዎች (በእውነቱ በ%)

3) ፍራቻዎች

4) በአገሬ ፊት ለፊት ትልቁ ችግሮች

5) ስኬታማ ቡድኖችን በሚገነቡበት ጊዜ ጥሩ መሪዎች ምን ዓይነት መመሪያዎች እና ችሎታ ይጠቀማሉ?

6) ጉግል. የቡድን ውጤታማነት ላይ ተጽዕኖ የሚያሳድሩ ምክንያቶች

7) የስራ ፈላጊዎች ዋና ዋና ጉዳዮች

8) አለቃ ታላቅ መሪ የሚያደርገው ምንድን ነው?

9) ሰዎች በሥራ ላይ ስኬታማ የሚያደርጉት ምንድን ነው?

10) በርቀት ለመስራት አነስተኛ ክፍያ ለመቀበል ዝግጁ ነዎት?

11) አሃድኒዝም አለ?

12) በሙያ ውስጥ ያለው አማካይነት

13) ሕይወት በህይወት ውስጥ

14) የአካላዊ ምክንያቶች

15) ሰዎች ተስፋ እንዲቆርጡ የሚያደርጉ ምክንያቶች (አና አና አስፈላጊ)

16) መተማመን (#WVS)

17) ኦክስፎርድ ደስታ ጥናት

18) ሥነ ልቦናዊ ደህንነት

19) የሚቀጥለው በጣም አስደሳች አጋጣሚዎ የት ይኖራል?

20) የአእምሮ ጤንነትዎን ለመንከባከብ በዚህ ሳምንት ምን ያደርጋሉ?

21) እኔ ያለኝን ያለፈውን, የአሁኑ ወይም የወደፊቱ ማሰብ ነው

22) መሬታዊነት

23) ሰው ሰራሽ የማሰብ ችሎታ እና ስልጣኔ መጨረሻ

24) ሰዎች ዛሬ ነገረው የሚሉት ለምንድን ነው?

25) የሥርዓተ- gender ታ ልዩነት በራስ መተማመንን በመገንባት (IFD Aldsabach)

26) Xing.com የኮም አገልግሎት ግምገማ

27) ፓትሪክ ሌንኪዮ "አምስት የቡድን ዲስኮች"

28) የሌላውን ችግር መረዳዳት ነው ...

29) የሥራ አቅርቦትን በመምረጥ ረገድ ልዩ ባለሙያተኞች ምን አስፈላጊ ነገር አለ?

30) ለምን ሰዎች ለውጥን የሚቃወሙበት ምክንያት (በ Sibhánn Mchare)

31) ስሜትዎን እንዴት ይቆጣጠራሉ? (በ NAWAN SUNAFAFA.A.)

32) 21 ለዘላለም የሚከፍሉዎት 21 ችሎታዎች (በኤርሚያስ TEO / 赵汉昇)

33) እውነተኛ ነፃነት ...

34) ከሌሎች ጋር መተማመንን የሚገነቡበት 12 መንገዶች (ጀስቲን ዌም)

35) የታካሚ ሠራተኛ ባህሪያትን (ችሎታ ያለው አስተዳደር ተቋም)

36) ቡድንዎን ለማነቃቃት 10 ቁልፍ

37) የህሊና አልጀብራ (በቭላድሚር ለፌብቭር)

38) ሶስት የተለዩ የወደፊት እድሎች (በዶክተር ክላር ደብሊው መቃብር)

39) የማይናወጥ በራስ መተማመንን ለመገንባት የሚወሰዱ እርምጃዎች (በሱረን ሳምርቺያን)

40)


Below you can read an abridged version of the results of our VUCA poll “Fears“. The full version of the results is available for free in the FAQ section after login or registration.

ፍራቻዎች

ሠንጠረዦችትሰስር
?
በአስተያየቱ ምላሾች መካከል ያለው ግንኙነት እና በሸንበቆቹ ተለዋዋጭ የሙከራ ቀለሞች መካከል ያለው ግንኙነት እነሆ
VUCA
?
በመልካሻው, አለመተማመን, ውስብስብነት እና አሻሚነት (V.U.C.A.) በሚገኙበት አዋጭ ተለዋዋጭነት ደረጃዎች ውስጥ አዲስ በይነገጽ አዲስ በይነገጽ ያለው አዲስ በይነገጽ ነው
አገር
ቋንቋ
-
Mail
እንደገና አስቤ
የ ትሰስር የጠቋሚ የሚተቹ ዋጋ
መደበኛ ስርጭት, ዊሊያምስ በዊሊያም ጎሳዎች (ተማሪ) r = 0.0315
መደበኛ ስርጭት, ዊሊያምስ በዊሊያም ጎሳዎች (ተማሪ) r = 0.0315
መደበኛ ያልሆነ ስርጭት, በፓርቲው r = 0.0013
ስርጭትመደበኛ
ያልሆነ
መደበኛ
ያልሆነ
መደበኛ
ያልሆነ
መደበኛመደበኛመደበኛመደበኛመደበኛ
ሁሉም ጥያቄዎች
ሁሉም ጥያቄዎች
የእኔ ትልቁ ፍርሃት ነው
የእኔ ትልቁ ፍርሃት ነው
Answer 1-
ደካማ አዎንታዊ
0.0548
ደካማ አዎንታዊ
0.0273
ደካማ አሉታዊ
-0.0187
ደካማ አዎንታዊ
0.0929
ደካማ አዎንታዊ
0.0386
ደካማ አሉታዊ
-0.0156
ደካማ አሉታዊ
-0.1555
Answer 2-
ደካማ አዎንታዊ
0.0176
ደካማ አሉታዊ
-0.0078
ደካማ አሉታዊ
-0.0391
ደካማ አዎንታዊ
0.0636
ደካማ አዎንታዊ
0.0505
ደካማ አዎንታዊ
0.0131
ደካማ አሉታዊ
-0.0956
Answer 3-
ደካማ አሉታዊ
-0.0007
ደካማ አሉታዊ
-0.0092
ደካማ አሉታዊ
-0.0470
ደካማ አሉታዊ
-0.0433
ደካማ አዎንታዊ
0.0499
ደካማ አዎንታዊ
0.0756
ደካማ አሉታዊ
-0.0216
Answer 4-
ደካማ አዎንታዊ
0.0457
ደካማ አዎንታዊ
0.0323
ደካማ አሉታዊ
-0.0260
ደካማ አዎንታዊ
0.0164
ደካማ አዎንታዊ
0.0371
ደካማ አዎንታዊ
0.0262
ደካማ አሉታዊ
-0.1045
Answer 5-
ደካማ አዎንታዊ
0.0262
ደካማ አዎንታዊ
0.1265
ደካማ አዎንታዊ
0.0101
ደካማ አዎንታዊ
0.0745
ደካማ አዎንታዊ
0.0006
ደካማ አሉታዊ
-0.0155
ደካማ አሉታዊ
-0.1761
Answer 6-
ደካማ አዎንታዊ
0.0006
ደካማ አዎንታዊ
0.0050
ደካማ አሉታዊ
-0.0626
ደካማ አሉታዊ
-0.0111
ደካማ አዎንታዊ
0.0260
ደካማ አዎንታዊ
0.0848
ደካማ አሉታዊ
-0.0351
Answer 7-
ደካማ አዎንታዊ
0.0123
ደካማ አዎንታዊ
0.0322
ደካማ አሉታዊ
-0.0680
ደካማ አሉታዊ
-0.0316
ደካማ አዎንታዊ
0.0538
ደካማ አዎንታዊ
0.0698
ደካማ አሉታዊ
-0.0520
Answer 8-
ደካማ አዎንታዊ
0.0659
ደካማ አዎንታዊ
0.0710
ደካማ አሉታዊ
-0.0280
ደካማ አዎንታዊ
0.0129
ደካማ አዎንታዊ
0.0390
ደካማ አዎንታዊ
0.0170
ደካማ አሉታዊ
-0.1339
Answer 9-
ደካማ አዎንታዊ
0.0774
ደካማ አዎንታዊ
0.1609
ደካማ አዎንታዊ
0.0053
ደካማ አዎንታዊ
0.0600
ደካማ አሉታዊ
-0.0068
ደካማ አሉታዊ
-0.0488
ደካማ አሉታዊ
-0.1816
Answer 10-
ደካማ አዎንታዊ
0.0766
ደካማ አዎንታዊ
0.0633
ደካማ አሉታዊ
-0.0121
ደካማ አዎንታዊ
0.0264
ደካማ አዎንታዊ
0.0354
ደካማ አሉታዊ
-0.0101
ደካማ አሉታዊ
-0.1334
Answer 11-
ደካማ አዎንታዊ
0.0633
ደካማ አዎንታዊ
0.0514
ደካማ አሉታዊ
-0.0086
ደካማ አዎንታዊ
0.0095
ደካማ አዎንታዊ
0.0276
ደካማ አዎንታዊ
0.0252
ደካማ አሉታዊ
-0.1273
Answer 12-
ደካማ አዎንታዊ
0.0434
ደካማ አዎንታዊ
0.0910
ደካማ አሉታዊ
-0.0333
ደካማ አዎንታዊ
0.0327
ደካማ አዎንታዊ
0.0360
ደካማ አዎንታዊ
0.0268
ደካማ አሉታዊ
-0.1534
Answer 13-
ደካማ አዎንታዊ
0.0714
ደካማ አዎንታዊ
0.0922
ደካማ አሉታዊ
-0.0385
ደካማ አዎንታዊ
0.0279
ደካማ አዎንታዊ
0.0445
ደካማ አዎንታዊ
0.0159
ደካማ አሉታዊ
-0.1639
Answer 14-
ደካማ አዎንታዊ
0.0820
ደካማ አዎንታዊ
0.0880
ደካማ አሉታዊ
-0.0054
ደካማ አሉታዊ
-0.0122
ደካማ አዎንታዊ
0.0070
ደካማ አዎንታዊ
0.0156
ደካማ አሉታዊ
-0.1209
Answer 15-
ደካማ አዎንታዊ
0.0554
ደካማ አዎንታዊ
0.1237
ደካማ አሉታዊ
-0.0348
ደካማ አዎንታዊ
0.0113
ደካማ አሉታዊ
-0.0143
ደካማ አዎንታዊ
0.0274
ደካማ አሉታዊ
-0.1160
Answer 16-
ደካማ አዎንታዊ
0.0716
ደካማ አዎንታዊ
0.0217
ደካማ አሉታዊ
-0.0386
ደካማ አሉታዊ
-0.0393
ደካማ አዎንታዊ
0.0742
ደካማ አዎንታዊ
0.0184
ደካማ አሉታዊ
-0.0763


MS Excel ላክ
ይህ ተግባር በራስዎ VUCA ምርጫዎች ውስጥ ይገኛል።
እሺ

You can not only just create your poll in the ቁርጥ ዋጋ «V.U.C.A መስጫ ዲዛይነር» (with a unique link and your logo) but also you can earn money by selling its results in the ቁርጥ ዋጋ «የሕዝብ ቁጥር ሱቅ», as already the authors of polls.

If you participated in VUCA polls, you can see your results and compare them with the overall polls results, which are constantly growing, in your personal account after purchasing ቁርጥ ዋጋ «የእኔ SDT»





[1] https://twitter.com/wileyprof
[2] https://colinallen.dnsalias.org
[3] https://philpeople.org/profiles/colin-allen

2023.10.13
FearpersonqualitiesprojectorganizationalstructureRACIresponsibilitymatrixCritical ChainProject Managementfocus factorJiraempathyleadersbossGermanyChinaPolicyUkraineRussiawarvolatilityuncertaintycomplexityambiguityVUCArelocatejobproblemcountryreasongive upobjectivekeyresultmathematicalpsychologyMBTIHR metricsstandardDEIcorrelationriskscoringmodelGame TheoryPrisoner's Dilemma
Valeri Kosenko
የምርት ባለቤት SaaS SDTEST®

ቫለሪይ በ 1993 እንደ ማህበራዊ ፔዳጎግ-ሳይኮሎጂስት ብቁ እና ከዚያን ጊዜ ጀምሮ እውቀቱን በፕሮጀክት አስተዳደር ውስጥ ተግባራዊ አድርጓል.
ቫለሪ የማስተርስ ዲግሪ እና የፕሮጀክት እና የፕሮግራም ማኔጀር መመዘኛ በ2013 አግኝቷል።በማስተር ፕሮግራሙ ወቅት የፕሮጀክት ሮድማፕ (GPM Deutsche Gesellschaft für Projektmanagement e.V.) እና Spiral Dynamics ያውቅ ነበር።
ቫለሪ የ V.U.C.A እርግጠኛ አለመሆንን የመመርመር ደራሲ ነው። ስፒራል ዳይናሚክስ እና የሂሳብ ስታቲስቲክስ በስነ ልቦና እና 38 ዓለም አቀፍ ምርጫዎችን በመጠቀም ጽንሰ-ሀሳብ።
ይህ ልጥፍ አለው 0 አስተያየቶች
መልስ ይስጡ
መልስ ሰርዝ
አስተያየትዎን ይተው
×
ይህን ስህተት ማግኘት
ትክክለኛውን VERSION ይጠቁሙ
የተፈለገውን እንደ ኢ-ሜይል ያስገቡ
ላክ
ሰርዝ
Bot
ሃይ እንዴት ናችሁ! ልጠይቅህ, የክብደት ተለዋዋጭነት ያውቃሉ?
አዎ!
አይ, እኔ ከቁጥቋጦ ተለዋዋጭነት ጋር በደንብ አላውቅም.
sdtest
1
ሃይ እንዴት ናችሁ! ልጠይቅህ, የክብደት ተለዋዋጭነት ያውቃሉ?