کتاب پر بنسټ ازموینه «Spiral Dynamics:
Mastering Values, Leadership, and
Change» (ISBN-13: 978-1405133562)
سپانسر
Afrikaans
Azərbaycan
Bosanski
Català
Cebuano
Chichewa
Corsu
Cymraeg
Dansk
Deutsch
Eesti
English
Español
Esperanto
Euskara
Filipino
Français
Frysk
Gaeilge
Galego
Gàidhlig na h-Alba
Hausa
Hawaiʻi
Hmoob
Hrvatski
Igbo
Indonesia
Italiano
Jawa
Kinyarwanda
Kreyòl Ayisyen
Kurdî
Latinus
Latviski
Lietuvių
Lëtzebuergesch
Magyar
Malagasy
Malti
Maori
Melayu
Nederlands
Norske
O'zbek
Polskie
Português
Română
Samoa
Sesotho
Shona
Shqip
Slovenski
Slovenský
Soomaali
Sunda
Suomen
Svenska
Tiếng Việt
Türkmenler
Türkçe
Yoruba
Zulu
isiXhosa
kiswahili
Íslenska
Čeština
Ελληνικά
Беларуская
Български
Кыргызча
Македонски
Монгол
Русский
Српски
Татар
Тоҷикӣ
Українська
Қазақ
հայերեն
יידיש
עִברִית
ئۇيغۇرچە
اردو
سنڌي
عربي
فارسی
پښتو
नेपाली
मराठी
हिन्दी
বাংলা
ਪੰਜਾਬੀ
ગુજરાતી
ଓଡିଆ
தமிழ்
తెలుగు
ಕನ್ನಡ
മലയാളം
සිංහල
ไทย
ພາສາລາວ
မြန်မာ
ქართული
አማርኛ
ខ្មែរ
中文(简体)
日本
한국인

Mathematical Psychology

This project investigates mathematical psychology's historical and philosophical foundations to clarify its distinguishing characteristics and relationships to adjacent fields. Through gathering primary sources, histories, and interviews with researchers, author Prof. Colin Allen - University of Pittsburgh [1, 2, 3] and his students  Osman Attah, Brendan Fleig-Goldstein, Mara McGuire, and Dzintra Ullis have identified three central questions: 

  1. What makes the use of mathematics in mathematical psychology reasonably effective, in contrast to other sciences like physics-inspired mathematical biology or symbolic cognitive science? 
  2. How does the mathematical approach in mathematical psychology differ from other branches of psychology, like psychophysics and psychometrics? 
  3. What is the appropriate relationship of mathematical psychology to cognitive science, given diverging perspectives on aligning with this field? 

Preliminary findings emphasize data-driven modeling, skepticism of cognitive science alignments, and early reliance on computation. They will further probe the interplay with cognitive neuroscience and contrast rational-analysis approaches. By elucidating the motivating perspectives and objectives of different eras in mathematical psychology's development, they aim to understand its past and inform constructive dialogue on its philosophical foundations and future directions. This project intends to provide a conceptual roadmap for the field through integrated history and philosophy of science.



The Project: Integrating History and Philosophy of Mathematical Psychology



This project aims to integrate historical and philosophical perspectives to elucidate the foundations of mathematical psychology. As Norwood Hanson stated, history without philosophy is blind, while philosophy without history is empty. The goal is to find a middle ground between the contextual focus of history and the conceptual focus of philosophy.


The team acknowledges that all historical accounts are imperfect, but some can provide valuable insights. The history of mathematical psychology is difficult to tell without centering on the influential Stanford group. Tracing academic lineages and key events includes part of the picture, but more context is needed to fully understand the field's development.


The project draws on diverse sources, including research interviews, retrospective articles, formal histories, and online materials. More interviews and research will further flesh out the historical and philosophical foundations. While incomplete, the current analysis aims to identify important themes, contrasts, and questions that shaped mathematical psychology's evolution. Ultimately, the goal is an integrated historical and conceptual roadmap to inform contemporary perspectives on the field's identity and future directions.



The Rise of Mathematical Psychology



The history of efforts to mathematize psychology traces back to the quantitative imperative stemming from the Galilean scientific revolution. This imprinted the notion that proper science requires mathematics, leading to "physics envy" in other disciplines like psychology.


Many early psychologists argued psychology needed to become mathematical to be scientific. However, mathematizing psychology faced complications absent in the physical sciences. Objects in psychology were not readily present as quantifiable, provoking heated debates on whether psychometric and psychophysical measurements were meaningful.


Nonetheless, the desire to develop mathematical psychology persisted. Different approaches grappled with determining the appropriate role of mathematics in relation to psychological experiments and data. For example, Herbart favored starting with mathematics to ensure accuracy, while Fechner insisted experiments must come first to ground mathematics.


Tensions remain between data-driven versus theory-driven mathematization of psychology. Contemporary perspectives range from psychometric and psychophysical stances that foreground data to measurement-theoretical and computational approaches that emphasize formal models.


Elucidating how psychologists negotiated to apply mathematical methods to an apparently resistant subject matter helps reveal the evolving role and place of mathematics in psychology. This historical interplay shaped the emergence of mathematical psychology as a field.



The Distinctive Mathematical Approach of Mathematical Psychology



What sets mathematical psychology apart from other branches of psychology in its use of mathematics?


Several key aspects stand out:

  1. Advocating quantitative methods broadly. Mathematical psychology emerged partly to push psychology to embrace quantitative modeling and mathematics beyond basic statistics.
  2. Drawing from diverse mathematical tools. With greater training in mathematics, mathematical psychologists utilize more advanced and varied mathematical techniques like topology and differential geometry.
  3. Linking models and experiments. Mathematical psychologists emphasize tightly connecting experimental design and statistical analysis, with experiments created to test specific models.
  4. Favoring theoretical models. Mathematical psychology incorporates "pure" mathematical results and prefers analytic, hand-fitted models over data-driven computer models.
  5. Seeking general, cumulative theory. Unlike just describing data, mathematical psychology aspires to abstract, general theory supported across experiments, cumulative progress in models, and mathematical insight into psychological mechanisms.


So while not unique to mathematical psychology, these key elements help characterize how its use of mathematics diverges from adjacent fields like psychophysics and psychometrics. Mathematical psychology carved out an identity embracing quantitative methods but also theoretical depth and broad generalization.



Situating Mathematical Psychology Relative to Cognitive Science



What is the appropriate perspective on mathematical psychology's relationship to cognitive psychology and cognitive science? While connected historically and conceptually, essential distinctions exist.


Mathematical psychology draws from diverse disciplines that are also influential in cognitive science, like computer science, psychology, linguistics, and neuroscience. However, mathematical psychology appears more skeptical of alignments with cognitive science.


For example, cognitive science prominently adopted the computer as a model of the human mind, while mathematical psychology focused more narrowly on computers as modeling tools.


Additionally, mathematical psychology seems to take a more critical stance towards purely simulation-based modeling in cognitive science, instead emphasizing iterative modeling tightly linked to experimentation.


Overall, mathematical psychology exhibits significant overlap with cognitive science but strongly asserts its distinct mathematical orientation and modeling perspectives. Elucidating this complex relationship remains an ongoing project, but preliminary analysis suggests mathematical psychology intentionally diverged from cognitive science in its formative development.


This establishes mathematical psychology's separate identity while retaining connections to adjacent disciplines at the intersection of mathematics, psychology, and computation.



Looking Ahead: Open Questions and Future Research



This historical and conceptual analysis of mathematical psychology's foundations has illuminated key themes, contrasts, and questions that shaped the field's development. Further research can build on these preliminary findings.

Additional work is needed to flesh out the fuller intellectual, social, and political context driving the evolution of mathematical psychology. Examining the influences and reactions of key figures will provide a richer picture.

Ongoing investigation can probe whether the identified tensions and contrasts represent historical artifacts or still animate contemporary debates. Do mathematical psychologists today grapple with similar questions on the role of mathematics and modeling?

Further analysis should also elucidate the nature of the purported bidirectional relationship between modeling and experimentation in mathematical psychology. As well, clarifying the diversity of perspectives on goals like generality, abstraction, and cumulative theory-building would be valuable.

Finally, this research aims to spur discussion on philosophical issues such as realism, pluralism, and progress in mathematical psychology models. Is the accuracy and truth value of models an important consideration or mainly beside the point? And where is the field headed - towards greater verisimilitude or an indefinite balancing of complexity and abstraction?

By spurring reflection on this conceptual foundation, this historical and integrative analysis hopes to provide a roadmap to inform constructive dialogue on mathematical psychology's identity and future trajectory.


The SDTEST® 



The SDTEST® is a simple and fun tool to uncover our unique motivational values that use mathematical psychology of varying complexity.



The SDTEST® helps us better understand ourselves and others on this lifelong path of self-discovery.


Here are reports of polls which SDTEST® makes:


1) په تیره میاشت کې د پرسونل په تړاو د شرکتونو عمل (هو / نه)

2) په تیره میاشت کې د پرسونل په تړاو د شرکتونو عمل (حقیقت په٪)

3) ویره

4) زما د هیواد په وړاندې ترټولو لوی مشکلات

5) کوم خصوصیات او وړتیاوې د بریالي ټیمونو جوړولو پر مهال ښه مشران کاروي؟

6) Google. فاکتورونه چې د ټیم EFFINT باندې تاثیر کوي

7) د دندو لټون کونکو اصلي لومړیتوبونه

8) کوم شی یو عالي مشر رامینځته کوي؟

9) څه خلک په کار کې بریالي کوي؟

10) ایا تاسو چمتو یاست چې د لرې ځای لپاره لږ معاش ترلاسه کړئ؟

11) ایا اتمال شتون لري؟

12) عظایف په مسلک کې

13) په ژوند کې اجتماعده

14) د عذاب لاملونه

15) لاملونه ولې خلک پریږدي (د انا حیاتي لخوا)

16) باور (#WVS)

17) د اکسفورډ خوښۍ سروې

18) رواني هوساینې

19) ستاسو راتلونکی په زړه پوری فرصت دی؟

20) تاسو به پدې اونۍ کې د خپل رواني روغتیا څارلو لپاره څه وکړئ؟

21) زه د خپل تیر، اوسني یا راتلونکي په اړه فکر کوم

22) متبادیکسیس

23) مصنوعي استخبارات او د تمدن پای

24) ولې خلک تراوسه اعلان کوي؟

25) د ځان باور په جوړولو کې د جنډر توپیر (که IFDINDINBCH)

26) د Xing.com کلتور ارزونه

27) پیټریک لنسي "د ټیم پنځه تخریبونه"

28) خواخوږي ده ...

29) د دندې وړاندیز غوره کولو کې د دې متخصصینو لپاره لازمي دي؟

30) ولې خلک د شعاع په وړاندې مقاومت کوي (د سیوبحین مچیل لخوا)

31) تاسو خپل احساسات څنګه تنظیم کوئ؟ (د نوال مصطفی م.

32) 21 مهارتونه چې تاسو ته د تل لپاره تادیه کوي (د Jeamiiah teo/ 赵汉昇)

33) ریښتینی ازادي ...

34) د نورو سره د باور جوړولو 12 لارې (په جسټین راویت)

35) د تکړه کارمند ځانګړتیاوې (د استعداد مدیریت انستیتوت)

36) ستاسو د ټیم هڅولو لپاره 10 کلي

37) د ضمیر الجبرا (د ولادیمیر لیفبویر لخوا)

38) د راتلونکي درې ځانګړي امکانات (د ډاکټر کلیر ډبلیو قبرز لخوا)

39) د غیر متزلزل ځان باور رامینځته کولو لپاره کړنې (د سورین سمارچین لخوا)

40)


Below you can read an abridged version of the results of our VUCA poll “Fears“. The full version of the results is available for free in the FAQ section after login or registration.

ویره

چارتونهاړیکه
?
دلته د ټولپوښتنې د ځوابونو او د سپرال متحرکاتو ازموینې رنګونو ترمینځ اړیکه ده
VUCA
?
دلته د سپوږمۍ متحرک کچې په کچه په میز کې د ارتباطي ژبې لید دی چیرې چې بې ثباته، بې باوري، او ارامات (V.U.C.A.) له لارې د اړوند او نرم تنفس رنګونو له لارې ښودل شوي
د هېواد
ژبه
-
Mail
اصلاحات
د ارتباط ضريب مهمو ارزښت
نورمال ویش، د ولیم سمندري ګوسټ (زده کونکي) لخوا r = 0.0314
نورمال ویش، د ولیم سمندري ګوسټ (زده کونکي) لخوا r = 0.0314
غیر نورمال توزیع، د سپرمان لخوا r = 0.0013
ویشغیر
نورمال
غیر
نورمال
غیر
نورمال
نورمالنورمالنورمالنورمالنورمال
ټولې پوښتنې
ټولې پوښتنې
زما ترټولو لوی ویره ده
زما ترټولو لوی ویره ده
Answer 1-
کمزوری مثبت
0.0553
کمزوری مثبت
0.0280
کمزوری منفي
-0.0191
کمزوری مثبت
0.0945
کمزوری مثبت
0.0390
کمزوری منفي
-0.0168
کمزوری منفي
-0.1570
Answer 2-
کمزوری مثبت
0.0186
کمزوری منفي
-0.0071
کمزوری منفي
-0.0396
کمزوری مثبت
0.0634
کمزوری مثبت
0.0495
کمزوری مثبت
0.0125
کمزوری منفي
-0.0947
Answer 3-
کمزوری منفي
-0.0002
کمزوری منفي
-0.0097
کمزوری منفي
-0.0471
کمزوری منفي
-0.0432
کمزوری مثبت
0.0513
کمزوری مثبت
0.0747
کمزوری منفي
-0.0221
Answer 4-
کمزوری مثبت
0.0461
کمزوری مثبت
0.0351
کمزوری منفي
-0.0285
کمزوری مثبت
0.0168
کمزوری مثبت
0.0381
کمزوری مثبت
0.0254
کمزوری منفي
-0.1054
Answer 5-
کمزوری مثبت
0.0262
کمزوری مثبت
0.1284
کمزوری مثبت
0.0097
کمزوری مثبت
0.0752
کمزوری منفي
-0.0009
کمزوری منفي
-0.0152
کمزوری منفي
-0.1764
Answer 6-
کمزوری مثبت
0.0017
کمزوری مثبت
0.0058
کمزوری منفي
-0.0617
کمزوری منفي
-0.0103
کمزوری مثبت
0.0250
کمزوری مثبت
0.0830
کمزوری منفي
-0.0356
Answer 7-
کمزوری مثبت
0.0131
کمزوری مثبت
0.0323
کمزوری منفي
-0.0673
کمزوری منفي
-0.0310
کمزوری مثبت
0.0528
کمزوری مثبت
0.0689
کمزوری منفي
-0.0521
Answer 8-
کمزوری مثبت
0.0668
کمزوری مثبت
0.0726
کمزوری منفي
-0.0277
کمزوری مثبت
0.0132
کمزوری مثبت
0.0386
کمزوری مثبت
0.0157
کمزوری منفي
-0.1348
Answer 9-
کمزوری مثبت
0.0777
کمزوری مثبت
0.1631
کمزوری مثبت
0.0046
کمزوری مثبت
0.0618
کمزوری منفي
-0.0081
کمزوری منفي
-0.0506
کمزوری منفي
-0.1819
Answer 10-
کمزوری مثبت
0.0777
کمزوری مثبت
0.0643
کمزوری منفي
-0.0125
کمزوری مثبت
0.0255
کمزوری مثبت
0.0360
کمزوری منفي
-0.0116
کمزوری منفي
-0.1330
Answer 11-
کمزوری مثبت
0.0636
کمزوری مثبت
0.0529
کمزوری منفي
-0.0080
کمزوری مثبت
0.0100
کمزوری مثبت
0.0275
کمزوری مثبت
0.0234
کمزوری منفي
-0.1281
Answer 12-
کمزوری مثبت
0.0434
کمزوری مثبت
0.0928
کمزوری منفي
-0.0336
کمزوری مثبت
0.0350
کمزوری مثبت
0.0334
کمزوری مثبت
0.0259
کمزوری منفي
-0.1535
Answer 13-
کمزوری مثبت
0.0719
کمزوری مثبت
0.0918
کمزوری منفي
-0.0379
کمزوری مثبت
0.0285
کمزوری مثبت
0.0440
کمزوری مثبت
0.0153
کمزوری منفي
-0.1642
Answer 14-
کمزوری مثبت
0.0835
کمزوری مثبت
0.0877
کمزوری منفي
-0.0049
کمزوری منفي
-0.0123
کمزوری مثبت
0.0075
کمزوری مثبت
0.0146
کمزوری منفي
-0.1216
Answer 15-
کمزوری مثبت
0.0571
کمزوری مثبت
0.1231
کمزوری منفي
-0.0347
کمزوری مثبت
0.0114
کمزوری منفي
-0.0134
کمزوری مثبت
0.0256
کمزوری منفي
-0.1163
Answer 16-
کمزوری مثبت
0.0716
کمزوری مثبت
0.0220
کمزوری منفي
-0.0391
کمزوری منفي
-0.0378
کمزوری مثبت
0.0742
کمزوری مثبت
0.0171
کمزوری منفي
-0.0766


د MS اکسیل د صادراتو
دا فعالیت به ستاسو په خپل VUCA ټولپوښتنو کې شتون ولري
سمه ده

You can not only just create your poll in the د تعرفې «V.U.C.A د ټاکنو طراح» (with a unique link and your logo) but also you can earn money by selling its results in the د تعرفې «د ټولپوښتنې هټۍ», as already the authors of polls.

If you participated in VUCA polls, you can see your results and compare them with the overall polls results, which are constantly growing, in your personal account after purchasing د تعرفې «زما SDT»





[1] https://twitter.com/wileyprof
[2] https://colinallen.dnsalias.org
[3] https://philpeople.org/profiles/colin-allen

2023.10.13
FearpersonqualitiesprojectorganizationalstructureRACIresponsibilitymatrixCritical ChainProject Managementfocus factorJiraempathyleadersbossGermanyChinaPolicyUkraineRussiawarvolatilityuncertaintycomplexityambiguityVUCArelocatejobproblemcountryreasongive upobjectivekeyresultmathematicalpsychologyMBTIHR metricsstandardDEIcorrelationriskscoringmodelGame TheoryPrisoner's Dilemma
ویلرای کوسنکو
د محصول مالک SaaS SDTEST®

والیري په 1993 کې د ټولنیز زده کړې - ارواپوه په توګه وړتیا درلوده او له هغه وخت راهیسې یې د پروژې مدیریت کې خپله پوهه پلي کړې.
والیري په 2013 کې د ماسټرۍ سند او د پروژې او پروګرام مدیر وړتیا ترلاسه کړه. د خپل ماسټر پروګرام په جریان کې، هغه د پروژې سړک نقشه (GPM Deutsche Gesellschaft für Projektmanagement e. V.) او Spiral Dynamics سره آشنا شو.
والیري د V.U.C.A د ناڅرګندتیا سپړلو لیکوال دی. په ارواپوهنه کې د سپیرل ډینامیکونو او ریاضياتو احصایې کارولو مفهوم، او 38 نړیوالې ټولپوښتنې.
دا پوسټ لري 0 نظرونه
ته ځواب ورکړئ
ځواب لغوه کړه
خپله نظر پرېږدئ
×
تاسو An error موندل
ستاسو په صحيح نسخه وړاندیز
ستاسو د برېښليک وليکئ په توګه د خوښې وړ
Send
لغوه
Bot
پخیر! اجازه راکړئ تاسو څخه وپوښتم، ایا تاسو دمخه د سپک متحرک سره اشنا یاست؟
هو!
نه، زه د سپوږمۍ تحرکاتو سره اشنا نه کوم.
sdtest
1
پخیر! اجازه راکړئ تاسو څخه وپوښتم، ایا تاسو دمخه د سپک متحرک سره اشنا یاست؟