prawf seiliedig ar lyfrau «Spiral
Dynamics: Mastering Values, Leadership,
and Change» (ISBN-13: 978-1405133562)
Noddwyr
Afrikaans
Azərbaycan
Bosanski
Català
Cebuano
Chichewa
Corsu
Cymraeg
Dansk
Deutsch
Eesti
English
Español
Esperanto
Euskara
Filipino
Français
Frysk
Gaeilge
Galego
Gàidhlig na h-Alba
Hausa
Hawaiʻi
Hmoob
Hrvatski
Igbo
Indonesia
Italiano
Jawa
Kinyarwanda
Kreyòl Ayisyen
Kurdî
Latinus
Latviski
Lietuvių
Lëtzebuergesch
Magyar
Malagasy
Malti
Maori
Melayu
Nederlands
Norske
O'zbek
Polskie
Português
Română
Samoa
Sesotho
Shona
Shqip
Slovenski
Slovenský
Soomaali
Sunda
Suomen
Svenska
Tiếng Việt
Türkmenler
Türkçe
Yoruba
Zulu
isiXhosa
kiswahili
Íslenska
Čeština
Ελληνικά
Беларуская
Български
Кыргызча
Македонски
Монгол
Русский
Српски
Татар
Тоҷикӣ
Українська
Қазақ
հայերեն
יידיש
עִברִית
ئۇيغۇرچە
اردو
سنڌي
عربي
فارسی
پښتو
नेपाली
मराठी
हिन्दी
বাংলা
ਪੰਜਾਬੀ
ગુજરાતી
ଓଡିଆ
தமிழ்
తెలుగు
ಕನ್ನಡ
മലയാളം
සිංහල
ไทย
ພາສາລາວ
မြန်မာ
ქართული
አማርኛ
ខ្មែរ
中文(简体)
日本
한국인

Mathematical Psychology

This project investigates mathematical psychology's historical and philosophical foundations to clarify its distinguishing characteristics and relationships to adjacent fields. Through gathering primary sources, histories, and interviews with researchers, author Prof. Colin Allen - University of Pittsburgh [1, 2, 3] and his students  Osman Attah, Brendan Fleig-Goldstein, Mara McGuire, and Dzintra Ullis have identified three central questions: 

  1. What makes the use of mathematics in mathematical psychology reasonably effective, in contrast to other sciences like physics-inspired mathematical biology or symbolic cognitive science? 
  2. How does the mathematical approach in mathematical psychology differ from other branches of psychology, like psychophysics and psychometrics? 
  3. What is the appropriate relationship of mathematical psychology to cognitive science, given diverging perspectives on aligning with this field? 

Preliminary findings emphasize data-driven modeling, skepticism of cognitive science alignments, and early reliance on computation. They will further probe the interplay with cognitive neuroscience and contrast rational-analysis approaches. By elucidating the motivating perspectives and objectives of different eras in mathematical psychology's development, they aim to understand its past and inform constructive dialogue on its philosophical foundations and future directions. This project intends to provide a conceptual roadmap for the field through integrated history and philosophy of science.



The Project: Integrating History and Philosophy of Mathematical Psychology



This project aims to integrate historical and philosophical perspectives to elucidate the foundations of mathematical psychology. As Norwood Hanson stated, history without philosophy is blind, while philosophy without history is empty. The goal is to find a middle ground between the contextual focus of history and the conceptual focus of philosophy.


The team acknowledges that all historical accounts are imperfect, but some can provide valuable insights. The history of mathematical psychology is difficult to tell without centering on the influential Stanford group. Tracing academic lineages and key events includes part of the picture, but more context is needed to fully understand the field's development.


The project draws on diverse sources, including research interviews, retrospective articles, formal histories, and online materials. More interviews and research will further flesh out the historical and philosophical foundations. While incomplete, the current analysis aims to identify important themes, contrasts, and questions that shaped mathematical psychology's evolution. Ultimately, the goal is an integrated historical and conceptual roadmap to inform contemporary perspectives on the field's identity and future directions.



The Rise of Mathematical Psychology



The history of efforts to mathematize psychology traces back to the quantitative imperative stemming from the Galilean scientific revolution. This imprinted the notion that proper science requires mathematics, leading to "physics envy" in other disciplines like psychology.


Many early psychologists argued psychology needed to become mathematical to be scientific. However, mathematizing psychology faced complications absent in the physical sciences. Objects in psychology were not readily present as quantifiable, provoking heated debates on whether psychometric and psychophysical measurements were meaningful.


Nonetheless, the desire to develop mathematical psychology persisted. Different approaches grappled with determining the appropriate role of mathematics in relation to psychological experiments and data. For example, Herbart favored starting with mathematics to ensure accuracy, while Fechner insisted experiments must come first to ground mathematics.


Tensions remain between data-driven versus theory-driven mathematization of psychology. Contemporary perspectives range from psychometric and psychophysical stances that foreground data to measurement-theoretical and computational approaches that emphasize formal models.


Elucidating how psychologists negotiated to apply mathematical methods to an apparently resistant subject matter helps reveal the evolving role and place of mathematics in psychology. This historical interplay shaped the emergence of mathematical psychology as a field.



The Distinctive Mathematical Approach of Mathematical Psychology



What sets mathematical psychology apart from other branches of psychology in its use of mathematics?


Several key aspects stand out:

  1. Advocating quantitative methods broadly. Mathematical psychology emerged partly to push psychology to embrace quantitative modeling and mathematics beyond basic statistics.
  2. Drawing from diverse mathematical tools. With greater training in mathematics, mathematical psychologists utilize more advanced and varied mathematical techniques like topology and differential geometry.
  3. Linking models and experiments. Mathematical psychologists emphasize tightly connecting experimental design and statistical analysis, with experiments created to test specific models.
  4. Favoring theoretical models. Mathematical psychology incorporates "pure" mathematical results and prefers analytic, hand-fitted models over data-driven computer models.
  5. Seeking general, cumulative theory. Unlike just describing data, mathematical psychology aspires to abstract, general theory supported across experiments, cumulative progress in models, and mathematical insight into psychological mechanisms.


So while not unique to mathematical psychology, these key elements help characterize how its use of mathematics diverges from adjacent fields like psychophysics and psychometrics. Mathematical psychology carved out an identity embracing quantitative methods but also theoretical depth and broad generalization.



Situating Mathematical Psychology Relative to Cognitive Science



What is the appropriate perspective on mathematical psychology's relationship to cognitive psychology and cognitive science? While connected historically and conceptually, essential distinctions exist.


Mathematical psychology draws from diverse disciplines that are also influential in cognitive science, like computer science, psychology, linguistics, and neuroscience. However, mathematical psychology appears more skeptical of alignments with cognitive science.


For example, cognitive science prominently adopted the computer as a model of the human mind, while mathematical psychology focused more narrowly on computers as modeling tools.


Additionally, mathematical psychology seems to take a more critical stance towards purely simulation-based modeling in cognitive science, instead emphasizing iterative modeling tightly linked to experimentation.


Overall, mathematical psychology exhibits significant overlap with cognitive science but strongly asserts its distinct mathematical orientation and modeling perspectives. Elucidating this complex relationship remains an ongoing project, but preliminary analysis suggests mathematical psychology intentionally diverged from cognitive science in its formative development.


This establishes mathematical psychology's separate identity while retaining connections to adjacent disciplines at the intersection of mathematics, psychology, and computation.



Looking Ahead: Open Questions and Future Research



This historical and conceptual analysis of mathematical psychology's foundations has illuminated key themes, contrasts, and questions that shaped the field's development. Further research can build on these preliminary findings.

Additional work is needed to flesh out the fuller intellectual, social, and political context driving the evolution of mathematical psychology. Examining the influences and reactions of key figures will provide a richer picture.

Ongoing investigation can probe whether the identified tensions and contrasts represent historical artifacts or still animate contemporary debates. Do mathematical psychologists today grapple with similar questions on the role of mathematics and modeling?

Further analysis should also elucidate the nature of the purported bidirectional relationship between modeling and experimentation in mathematical psychology. As well, clarifying the diversity of perspectives on goals like generality, abstraction, and cumulative theory-building would be valuable.

Finally, this research aims to spur discussion on philosophical issues such as realism, pluralism, and progress in mathematical psychology models. Is the accuracy and truth value of models an important consideration or mainly beside the point? And where is the field headed - towards greater verisimilitude or an indefinite balancing of complexity and abstraction?

By spurring reflection on this conceptual foundation, this historical and integrative analysis hopes to provide a roadmap to inform constructive dialogue on mathematical psychology's identity and future trajectory.


The SDTEST® 



The SDTEST® is a simple and fun tool to uncover our unique motivational values that use mathematical psychology of varying complexity.



The SDTEST® helps us better understand ourselves and others on this lifelong path of self-discovery.


Here are reports of polls which SDTEST® makes:


1) Gweithredoedd cwmnïau mewn perthynas â phersonél yn ystod y mis diwethaf (ie / na)

2) Gweithredoedd cwmnïau mewn perthynas â phersonél yn ystod y mis diwethaf (ffaith mewn%)

3) Ofnau

4) Problemau mwyaf sy'n wynebu fy ngwlad

5) Pa rinweddau a galluoedd y mae arweinwyr da yn eu defnyddio wrth adeiladu timau llwyddiannus?

6) Google. Ffactorau sy'n effeithio ar effeithiolrwydd tîm

7) Prif flaenoriaethau ceiswyr gwaith

8) Beth sy'n gwneud bos yn arweinydd gwych?

9) Beth sy'n gwneud pobl yn llwyddiannus yn y gwaith?

10) Ydych chi'n barod i dderbyn llai o dâl i weithio o bell?

11) A yw rhagfarn yn bodoli?

12) Rhagfarn

13) Adalaeth mewn Bywyd

14) Achosion o Aberystiaeth

15) Rhesymau pam mae pobl yn rhoi'r gorau iddi (gan Anna Vital)

16) Ymddiried (#WVS)

17) Arolwg Hapusrwydd Rhydychen

18) Lles seicolegol

19) Ble fyddai'ch cyfle mwyaf cyffrous nesaf?

20) Beth fyddwch chi'n ei wneud yr wythnos hon i ofalu am eich iechyd meddwl?

21) Rwy'n byw yn meddwl am fy ngorffennol, y presennol neu'r dyfodol

22) Teilyngdod

23) Deallusrwydd artiffisial a diwedd gwareiddiad

24) Pam mae pobl yn cyhoeddi?

25) Gwahaniaeth Rhyw wrth Adeiladu Hunan-hyder (IFD Allensbach)

26) Xing.com Asesiad Diwylliant

27) The Five Dysfunction of a Team gan Patrick Lencioni

28) Empathi yw ...

29) Beth sy'n hanfodol i arbenigwyr TG wrth ddewis cynnig swydd?

30) Pam mae pobl yn gwrthsefyll newid (gan Siobhán McHale)

31) Sut ydych chi'n rheoleiddio'ch emosiynau? (gan Nawal Mustafa M.A.)

32) 21 Sgiliau sy'n eich talu am byth (gan Jeremiah Teo / 赵汉昇)

33) Mae rhyddid go iawn yn ...

34) 12 Ffordd i Adeiladu Ymddiriedolaeth ag Eraill (gan Justin Wright)

35) Nodweddion gweithiwr talentog (gan Sefydliad Rheoli Talent)

36) 10 allwedd i ysgogi eich tîm

37) Algebra Cydwybod (gan Vladimir Lefebvre)

38) Tri Posibilrwydd Nodedig y Dyfodol (gan Dr. Clare W. Graves)

39) Camau i Greu Hunan-Ymddiriedaeth Ddiysgog (gan Suren Samarchyan)

40)


Below you can read an abridged version of the results of our VUCA poll “Fears“. The full version of the results is available for free in the FAQ section after login or registration.

Ofnau

siartiauCydberthyniad
?
Mae'r swyddogaeth hon yn cyfrifo cydberthynas llinol ac aflinol yn awtomatig. Cyn cynnal dadansoddiad cydberthynas, crëwch blot gwasgariad i wirio natur y perthnasoedd. Mae cyfernodau cydberthynas yn ystyrlon dim ond os yw'r math o berthynas dybiedig wedi'i gadarnhau'n weledol neu'n ddadansoddol.
VUCA
?
Dyma olygfa ryngwyneb newydd o gydberthynas mewn tabl yn ôl lefelau dynameg troellog lle dangosir anwadalrwydd, ansicrwydd, cymhlethdod ac amwysedd (V.U.C.A.) trwy ddibyniaethau cydberthynas cadarnhaol a negyddol rhwng ymatebion yr arolwg barn a lliwiau dynameg troellog
Gwlad
Iaith
-
Mail
Ailgyfrifo
Math Cydberthynas
llinellol (Pearson)
llinellol (Pearson)
Aflinol (Spearman)
Gwerth feirniadol o'r cyfernod cydberthyniad
Dosbarthiad Arferol, gan William Sealy Gosset (Myfyriwr)
Dosbarthiad Arferol, gan William Sealy Gosset (Myfyriwr)
Dosbarthiad nad yw'n arferol, gan Spearman
NosbarthiadauNad
yw'n normal
Nad
yw'n normal
Nad
yw'n normal
NormalNormalNormalNormalNormal
Pob cwestiwn
Pob cwestiwn
Fy ofn mwyaf yw
Fy ofn mwyaf yw
Answer 1-
Gadarnhaol gwan
0.0482
Gadarnhaol gwan
0.0259
Negyddol gwan
-0.0250
Gadarnhaol gwan
0.0985
Gadarnhaol gwan
0.0348
Negyddol gwan
-0.0113
Negyddol gwan
-0.1504
Answer 2-
Gadarnhaol gwan
0.0235
Gadarnhaol gwan
0.0009
Negyddol gwan
-0.0417
Gadarnhaol gwan
0.0619
Gadarnhaol gwan
0.0463
Gadarnhaol gwan
0.0123
Negyddol gwan
-0.0971
Answer 3-
Negyddol gwan
-0.0021
Gadarnhaol gwan
0.0040
Negyddol gwan
-0.0483
Negyddol gwan
-0.0428
Gadarnhaol gwan
0.0428
Gadarnhaol gwan
0.0749
Negyddol gwan
-0.0225
Answer 4-
Gadarnhaol gwan
0.0446
Gadarnhaol gwan
0.0326
Negyddol gwan
-0.0296
Gadarnhaol gwan
0.0197
Gadarnhaol gwan
0.0346
Gadarnhaol gwan
0.0227
Negyddol gwan
-0.0997
Answer 5-
Gadarnhaol gwan
0.0222
Gadarnhaol gwan
0.1291
Gadarnhaol gwan
0.0029
Gadarnhaol gwan
0.0839
Negyddol gwan
-1.80E-5
Negyddol gwan
-0.0119
Negyddol gwan
-0.1816
Answer 6-
Gadarnhaol gwan
0.0043
Gadarnhaol gwan
0.0158
Negyddol gwan
-0.0643
Negyddol gwan
-0.0108
Gadarnhaol gwan
0.0149
Gadarnhaol gwan
0.0867
Negyddol gwan
-0.0357
Answer 7-
Gadarnhaol gwan
0.0100
Gadarnhaol gwan
0.0445
Negyddol gwan
-0.0687
Negyddol gwan
-0.0339
Gadarnhaol gwan
0.0441
Gadarnhaol gwan
0.0736
Negyddol gwan
-0.0512
Answer 8-
Gadarnhaol gwan
0.0624
Gadarnhaol gwan
0.0845
Negyddol gwan
-0.0295
Gadarnhaol gwan
0.0114
Gadarnhaol gwan
0.0354
Gadarnhaol gwan
0.0169
Negyddol gwan
-0.1364
Answer 9-
Gadarnhaol gwan
0.0735
Gadarnhaol gwan
0.1609
Negyddol gwan
-0.0009
Gadarnhaol gwan
0.0628
Negyddol gwan
-0.0084
Negyddol gwan
-0.0493
Negyddol gwan
-0.1765
Answer 10-
Gadarnhaol gwan
0.0756
Gadarnhaol gwan
0.0622
Negyddol gwan
-0.0152
Gadarnhaol gwan
0.0242
Gadarnhaol gwan
0.0376
Negyddol gwan
-0.0052
Negyddol gwan
-0.1348
Answer 11-
Gadarnhaol gwan
0.0658
Gadarnhaol gwan
0.0561
Negyddol gwan
-0.0086
Gadarnhaol gwan
0.0102
Gadarnhaol gwan
0.0243
Gadarnhaol gwan
0.0198
Negyddol gwan
-0.1260
Answer 12-
Gadarnhaol gwan
0.0415
Gadarnhaol gwan
0.1046
Negyddol gwan
-0.0390
Gadarnhaol gwan
0.0361
Gadarnhaol gwan
0.0275
Gadarnhaol gwan
0.0255
Negyddol gwan
-0.1523
Answer 13-
Gadarnhaol gwan
0.0744
Gadarnhaol gwan
0.1011
Negyddol gwan
-0.0390
Gadarnhaol gwan
0.0271
Gadarnhaol gwan
0.0325
Gadarnhaol gwan
0.0140
Negyddol gwan
-0.1591
Answer 14-
Gadarnhaol gwan
0.0831
Gadarnhaol gwan
0.0922
Negyddol gwan
-0.0086
Negyddol gwan
-0.0139
Gadarnhaol gwan
0.0030
Gadarnhaol gwan
0.0101
Negyddol gwan
-0.1131
Answer 15-
Gadarnhaol gwan
0.0556
Gadarnhaol gwan
0.1306
Negyddol gwan
-0.0297
Gadarnhaol gwan
0.0122
Negyddol gwan
-0.0229
Gadarnhaol gwan
0.0240
Negyddol gwan
-0.1175
Answer 16-
Gadarnhaol gwan
0.0685
Gadarnhaol gwan
0.0315
Negyddol gwan
-0.0348
Negyddol gwan
-0.0426
Gadarnhaol gwan
0.0629
Gadarnhaol gwan
0.0163
Negyddol gwan
-0.0701


Allforio i MS Excel
Bydd y swyddogaeth hon ar gael yn eich polau VUCA eich hun
Iawn

You can not only just create your poll in the tariff «dylunydd pôl V.U.C.A» (with a unique link and your logo) but also you can earn money by selling its results in the tariff «Bleidlais», as already the authors of polls.

If you participated in VUCA polls, you can see your results and compare them with the overall polls results, which are constantly growing, in your personal account after purchasing tariff «Fy SDT»





[1] https://twitter.com/wileyprof
[2] https://colinallen.dnsalias.org
[3] https://philpeople.org/profiles/colin-allen

2023.10.13
FearpersonqualitiesprojectorganizationalstructureRACIresponsibilitymatrixCritical ChainProject Managementfocus factorJiraempathyleadersbossGermanyChinaPolicyUkraineRussiawarvolatilityuncertaintycomplexityambiguityVUCArelocatejobproblemcountryreasongive upobjectivekeyresultmathematicalpsychologyMBTIHR metricsstandardDEIcorrelationriskscoringmodelGame TheoryPrisoner's Dilemma
Valerii Kosenko
Perchennog Cynnyrch SaaS SDTEST®

Cymhwyswyd Valerii fel pedagog-seicolegydd cymdeithasol yn 1993 ac ers hynny mae wedi cymhwyso ei wybodaeth mewn rheoli prosiectau.
Enillodd Valerii radd Meistr a chymhwyster rheolwr prosiect a rhaglen yn 2013. Yn ystod ei raglen Meistr, daeth yn gyfarwydd â Project Roadmap (GPM Deutsche Gesellschaft für Projektmanagement e. V.) a Spiral Dynamics.
Mae Valerii yn awdur ar archwilio ansicrwydd y V.U.C.A. cysyniad defnyddio Spiral Dynamics ac ystadegau mathemategol mewn seicoleg, a 38 polau rhyngwladol.
Mae gan y swydd hon 0 Sylwadau
Ymateb i
Canslo Ateb
Gadewch Eich Sylw
×
Bod yn gweld gwall
CYNNIG EICH FERSIWN GYWIR
Rhowch eich e-bost fel y dymunir
Anfon
Diddymu
Bot
sdtest
1
Helo yno! Gadewch imi ofyn i chi, a ydych chi eisoes yn gyfarwydd â dynameg troellog?